270 likes | 420 Views
High Energy Neutrino Astronomy and GRBs. 黎 卓 北京大学物理学院天文系 Collaborators: Eli Waxman, 戴子高, 陆埮 & 宋黎明. Cosmic ray spectrum. E -2.7. ~1/( km 2 s). E -3. R(>10 20 eV) ~1/(100km 2 yr). Nagano & Watson 2000. Ultra-High Energy Cosmic Ray: extragalactic. Light nuclei (p?) Isotropic.
E N D
High Energy Neutrino Astronomy and GRBs 黎 卓 北京大学物理学院天文系 Collaborators:Eli Waxman, 戴子高, 陆埮 & 宋黎明
Cosmic ray spectrum E-2.7 ~1/(km2s) E-3 R(>1020eV) ~1/(100km2yr) Nagano & Watson 2000
Ultra-High Energy Cosmic Ray: extragalactic Light nuclei (p?) Isotropic Heavy nuclei Galactic plane enhancement X-Galactic HiRes Protons
UHECR source: propagation • “GZK sphere” for X-galactic protons • Pion production threshold: E>5*1019eV • E>5*1019eV sources: <100Mpc • Associated with LLS? Anisotropic? ~100 Mpc
Augerhot results: astrophysical accelerators (AGN?) 27, >60EeV Auger collaboration 2007
HE Neutrinos from CR accelerators • -production in accelerators: • acc. p’s; acc. e’s : synchrotron/IC photons • If all p energy converted to (in the source) • Waxman-Bahcall Bound for sources optically thin to p: Waxman & Bahcall 1999
GRB shock model • Internal shocks: fast shells catch up slower shells (unsteady flow) • External shock: flow slows down as plows into external medium ~1016cm ~1013 cm X O Meszaros (2003)
Non-thermal (broken PL) spectra • Most energy around Epeak ~1MeV • Extend to >10 GeV in some bursts GRB spectra photon electron/proton p=2: Shock acceleration? E-2 E-2 10GeV
HE n’s: pg interaction p+→ m+ + nm (~10-8s) m+→ e+ + ne+ nm(~10-6s) _ e=0.05ep eg ep=0.2GeV2G2 • D-resonance: • eg~1 MeV (burst) en~1014.5eV. • eg~10 eV (afterglow) en~1018eV.
Prompt neutrino • The fraction of total energy loss • td~R/(c), fπ=td x tπ-1 • For >10PeV protons, • Suppression by pion/muon EM energy loss • life, tcool1/ • p fractional energy-loss rate: en2n(en) f=0.2 [Waxman & Bahcall 1997] ~1PeV 100TeV Neutrino energy [Kashiti & Waxman 2005; Rachen & Meszaros 1998]
xe=0.1 xB=0.01 E0=1053erg n=1/cm3 Afterglow shock model Radius Bulk LF Magnetic field Le -1/2 em ec -1 Afterglow spec. e
Afterglow neutrinos • Given protons,~1e+19eV, produced in afterglow shock, the energy loss, ~0.1, is also significant. en2n(en) pspectrum Np +1/2 n spec. -2 +1 ~1EeV ep en Li, Dai & Lu (2002)
A note on afterglow shock • Fermi shock acceleration require strong magnetic field • Downstream: equipartition field derived from afterglow modeling • Upstream: X-ray afterglow spectra imply upstream field amplification to ~mG G tres<tIC g e ~1/G downstream upstream: B, n shock front Li & Waxman (2006)
+-induced GRBneutrinos Suppressed by p and/or m EM cooling en2n WB bound: f=1 Efficient acceleration? f=0.2 f=0.07 Prompt ~10sec Afterglow ~day 100TeV 1PeV 1EeV? en
EeV neutrinos: 0-induced en2n WB bound: f=1 f=0.2 No suppression; originated from p0; 3% WB bound Prompt ~10sec 100TeV 1PeV 1EeV en
HE ’s from neutral 0 production p0 • Processes g CMB EM cooling suppression m n no cooling suppression [Li & Waxman 2007b]
q n lm g CMB peak n+2 • Q1: suppressed by e+- production? • Q2: deflected by IGM field (and hence delayed)? cross section -1, similar above threshold e+- thr. +-thr. =1019-20eV, /e=(3-10)% [Li & Waxman 2007b]
Q3: HE ’s escape from source? • e+- production optical depth in source • low energy break • K-N suppression of cross section • Strong synchrotron absorption below keV • Conclusion: >10PeV photons escape from GRB source dn/de [Li & Waxman 2007b] ~1MeV ~1keV e [Li & Waxman 2007a] [Li & Song 2004]
Featured EeV neutrinos en2n WB bound 1 0.2 20/km2yr 1km2 experiment 0.03 [Li & Waxman 2007b] 100TeV 1PeV 1EeV en
Identify UHECR sources (time/direction) Constrain source & acceleration physics e.g. resolve jet composition (lepton, or baryon) Constrain Violation of Lorentz-invariant n-g timing n-physics Oscillation; appearance Interaction cross section Neutrino astronomy
South Pole • Optical Cerenkov • 0.1 km2: Amanda • 1 km2: IceCube • 1-1000TeV
Amanda/IceCube 80strings (60PM each) in 2011
Mediterranean Sea • Optical Cerenkov • 0.1 km2: • Antares • Nestro • NEMO • 1 km2: KM3NeT
Coherence radio Cerenkov: • ANITA (balloon) • ARIANNA (array) • >>1km2 • >0.1EeV [Barwick 2007]
New Amanda result Berghaus for IceCube Collaboration 2007 2000-2003 data