790 likes | 985 Views
International Jubilee Seminar “Current Problems in Solid State Physics” November 15-19, 2011, Kharkov, Ukraine. “Homogenization of photonic and phononic crystals” F. Pérez Rodríguez Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Post. J-48, Puebla, Pue. 72570, M éxico
E N D
International Jubilee Seminar “Current Problems in Solid State Physics” November 15-19, 2011, Kharkov, Ukraine “Homogenization of photonic and phononic crystals” F. Pérez Rodríguez Instituto de Física, Benemérita Universidad Autónoma de Puebla, Apdo. Post. J-48, Puebla, Pue. 72570, México E-mail: fperez@ifuap.buap.mx
Plan • Metamateriales fotónicos • Metamateriales fonónicos
Photonic crystal Photonic metamaterial
Photonic metamaterial Pendry and Smith, Phys.Today (2004)
Poynting and wave vectors Positive- index or right-handed material. Negative-index or left- handed material.
fuente kp Sp kװ kn Sn Refracción negativa
Simulation of refraction Pendry and Smith, Phys.Today (2004).
Observation of negative refraction Shelby, Smith and Schultz, Science (2001)
J. Valentine, S. Zhang, T. Zentgraf, et al, Nature, 2008
Focusing with ordinary and Veselago lenses Pendry and Smith, Phys.Today (2004).
How to “make” the PC uniform? Conventional approach: (Bloch) wavelength >> lattice constant (period) Homogenization or mean-field theory Rapid oscillations of fields are smoothed out:
Theory is very general: • Arbitrary dielectric, metallic, magnetic, and chiral • inclusions. • Arbitrary Bravais lattice. • Inclusions in neighboring cells can be isolated or • in contact.
Material characterization Tensors of the bianisotropic response Particular cases: magnetodielectric and metallomagnetic photonic crystals with isotropic inclusions
Homogenization of Photonic Crystals V. Cerdán-Ramírez, B. Zenteno-Mateo, M. P. Sampedro, M. A. Palomino-Ovando, B. Flores-Desirena, and F. Pérez-Rodríguez, J. Appl. Phys. 106, 103520 (2009). Maxwell’s Equations at micro-level
Effective parameters Homogenization
Cubic lattice of small spheres Maxwell Garnett
Metallic wires z f = 0.001 r/a = 0.017 p = cμ0a σ
High-permeability magnetic wires z 1000+10i 0.1 0.2 0
Left-handed metamaterial y z x
300+5i 1000+10i
Effective plasma frequency for metal-dielectric superlattices B. Zenteno-Mateo, V. Cerdán-Ramírez, B. Flores-Desirena, M. P. Sampedro, E. Juárez-Ruiz, and F. Pérez-Rodríguez, Progress in Electromagnetics Research Letters (PIER Lett.) 22, 165-174 (2011) Effective permittivity Rytov (1956) Metal-dielectric superlattice
Al-glass f=0.5/10.5 PIER Lett. (2011)
Al-glass f=0.5/100.5
J.A. Reyes-Avendaño, U. Algredo-Badillo, P. Halevi, and F Pérez-Rodríguez, New J. Phys. 13 073041 (2011). Material characterization (conductivity) Nonlocal effective conductivity dyadic:
Nonlocal dielectric response Expansion in small wave vectors (ka<< 1): Magneto-dielectric response Bianisotropic response