510 likes | 854 Views
Fragen. Kraft (Boden) im Einbeinstand Kraft (Sprunggelenk) im Zehenstand auf einem Bein Kraft (Achillessehne) im Zehenstand auf einem Bein Kraft (H üftgelenk) im Einbeinstand Kraft (Ellbogen) beim horizontalen Halten eine Masse von 10 kg. Allgemeine Biomechanik Force System Analysis.
E N D
Fragen • Kraft (Boden) im Einbeinstand • Kraft (Sprunggelenk) im Zehenstand auf einem Bein • Kraft (Achillessehne) im Zehenstand auf einem Bein • Kraft (Hüftgelenk) im Einbeinstand • Kraft (Ellbogen) beim horizontalen Halten eine Masse von 10 kg
Allgemeine Biomechanik Force System Analysis Benno M. Nigg University of Calgary 2006
Biomechanik • Studiert • Kräfte am und im menschlichen Körper und • Effekte, die durch diese Kräfte erzeugt werden
Reaktionen biologischer Systeme biologisch z.B. stärkere Fasern und Materialien mechanisch Beschleunigung F = m · a Deformation F = k · Dx Bruch / Riss
Force System Analysis FSA Viele Möglichkeiten, mechanische Probleme zu lösen. FSA ist eine Möglichkeit. • systematisch • allgemein anwendbar
Force System Analysis FSA Ziel: das mechanische Verhalten eines biologischen Systems zu verstehen Prozess: (1) Definiere das System (2) Annahmen (3) Free Body Diagram (Freikörperdiagramm) (4) Bewegungsgleichungen (5) Berechnung der Unbekannten
Das System (system of interest) • Vorgehen • (1) Sketch • Aufteilen in zwei Teile • Teilen wo Kraft gesucht ist • System ist einer der beiden Teile Mechanisches System für biomechanische Anwendungen Struktur and welcher die gesuchte Kraft als äussere Kraftwirkt
Beispiel Gesucht: Kraft im rechten Hüftgelenk beim Laufen (a) (b) (c) (d) Verschiedene Möglichkeiten
Annahmen • 1-dim, 2-dim oder 3-dim • Kräfte die eingeschlossen werden • Grösse und Richtung der Kräfte • Materialeigenschaften • Strukturdaten • Andere wichtige Annahmen
Free Body Diagram Das Free Body Diagram, FBD, besteht aus: • Sketch des Systems • Alle äusseren Kräfte und Momente, die am System angreifen • Koordinatensystem
Sketch Zeichne schematisch das System Nichts anderes!!!! Beispiel System = Fuss Zeichne nur den Fuss (ohne Boden und Bein) Wichtigste Aspekte
Äussere Kräfte und Momente Distanzkräfte Gravitation Elektrische Magnetische Kontaktkräfte Gelenkskraft Sehnenkraft Bandkraft Kontakt mit Umwelt Luftwiederstand
Resultierende Kräfte Fres • Resultierende Kraft • Summe von verschiedenen Kräften • Beispiele: • • Körpergewicht • • Bodenreaktionskraft
Koordinatensystem Ein Koordinatensystem muss eingeschlossen werden um die positiven Achsenrichtungen zu definieren y x
Beispiele • Zeichne das FBD, welches gebraucht werden kann um die Kraft in der Achillessehen beim einbeinigen Zehenstand zu bestimmen • FBD um die Kraft im Ellbogengelenk beim Halten einer Masse in der Hand • • System • Annahmen• Sketch• Koordinatensystem
Die Summe aller Kräfte, die an einem System angreifen (= resultierende Kraft) ist gleich dem Produkt von Masse und Beschleunigung des Schwerpunktes des Systems SFi = Fres = m · aKSP Newton (angepasst)
Die Summe aller Momente, die an einem System wirken (= resultierendes Moment) ist gleich dem Produkt des Trägheitsmomentes und der Winkelbeschleunigung bezüglich einer Achse durch den KSP. SMiCM = MresCM = Izz · aCM Newton (angepasst)
Bewegungsgleichungen 2-d Ohne Änderung des Bewegungszustandes SFx = 0 SFy = 0 SMCMz = 0 Mit Änderung des Bewegungszustandes SFx = mSI · aSIx SFy = mSI · aSIy SMCMz = Izz · az
Bewegungsgleichungen 2-d mSI = Masse des Systems Fx = Kraft in x-Achsenrichtung aSIx = Beschleuningung des Schwerpunktes des Systems in x-Achsenrichtung MCMz = Moment bezüglich der z-Achse durch den Schwerpunkt des Systems Izz = Trägheitsmoment bezüglich der z-Achse durch den Schwerpunkt des Systems az = Winkelbeschleuningung bezüglich der z-Achse durch den Schwerpunkt des Systems
Beispiel • Frage: • Bestimme die Kraft in der Achillessehne wenn eine Person auf einem Bein im Zehenstand steht • System: Fuss
Kraft in Achillessehne Annahmen: • 2-dim• Fuss starr• Gewicht Fuss vernachlässigt• Äussere Kräfte: Bodenreaktionskraft Kraft im Sprunggelenk Kraft in Achillessehne• Alle Kräfte in vertikaler Richtung
y FJ FA x a b FG Kraft in Achillessehne Free Body Diagram Annahmen a = Distanz FA - Gelenka = 5 cmb = Distanz FG - Gelenkb = 20 cmFG = 1000 N
Numerische Lösung FA = 4 · FG = 4 · Körpergewicht = 4000 N FA = ( ) · FG b––a Kraft in Achillessehne Bewegungsgleichungen: Translation FA + FG + FJ = 0 (1) Rotation - b · FG + a · FA = 0 (2) Lösung (von Gleichung 2):
FJ = - FA - FG a + b FJ = - FG = - 5 FG = - 5000 N = - 5 BW a FA = ( ) · FG b––a Kraft im Gelenk Bewegungsgleichungen: Translation FA + FG + FJ = 0 (1) Rotation b · FG - a · FA = 0 (2) Negatives Vorzeichen: Kraft in entgegengesetzter Richtung als gezeichnet
Kraft im Ellbogengelenk Frage: Kraft im Ellbogengelenk. Oberarm vertikal. Unterarm und Hand horizontal. Masse von 10 kg in Hand System: Unterarm und Hand
Kraft im Ellbogengelenk Annahmen: • 2-dim• Unterarm und Hand ein starrer Körper• Masse Unterarm mA = 2 kg• Masse in Hand mW = 10 kg• äussere Kräfte FW = Gewicht der Masse in der Hand FA = Gewicht Unterarm und Hand FM = Muskelkraft Bizeps FJ = Kraft Ellbogengelenk
Kraft im Ellbogengelenk Annahmen: • Alle Kräfte in vertikaler Richtung • a = Distanz Bizepskraft und Gelenkskraft • a = 10 cm • b = Distanz Gewicht Arm und Bizepskraft • b = 10 cm • c = Distanz Gewicht Hand und Bizepskraft • c = 20 cm
Kraft im Ellbogengelenk Annahmen: • FA = ( 0 N, - 20 N, 0 N ) • FW = ( 0 N, - 100 N, 0 N )
FJ FM FW A M C D y a b c FA x Kraft im Ellbogengelenk Free body diagram
FJ FM FG A M C D a b c FA Ellbogengelenk Bewegungsgleichungen Translation SFy: FJ + FM + FA + FW = 0 (1)
FJ FM FW A M C D a b c FA Ellbogengelenk Bewegungsgleichungen Translation SFy: FJ + FM + FA + FW = 0 (1) Rotation (Momente bezgl. Punkt M) SMM: + c · FW + b · FA - a · FJ = 0 (2) Punkt M unbekannte Muskelkraft wird eliminiert
Ellbogengelenk Gleichungssystem mit 2 Gleichungen 1 für Translation 1 für Rotation 2 Unbekannte FJ FM
FJ = ( ) [ c · FW + b · FA ] (3) 1––a Ellbogengelenk Lösung Gleichung (2) a · FJ = c · FW + b · FA
Ellbogengelenk Gleichung (1) FJ + FM + FA + FW = 0 FM = - FA - FW - FJ (3) in (4) FM = - FA - FW - ( ) [ c · FW + b · FA ] 1––a FM = [ 1 + ( ) FW + [ 1 + ( ) ] FA c––a b––a
Ellbogengelenk Numerische Lösung 1––––0.1m FJ = { } · {0.2m · (-100N)+0.1m · (-20N)} FJ = - 220 N
Ellbogengelenk • Die Kraft im Ellbogengelenk ist 220 N. • Das Minuszeichen bedeutet dass die Kraft in entgegengesetzter Richtung zur eingezeichneten Kraft wirkt (negative y Richtung)
Allgemeine Regel Das Vorzeichen zeigt an, ob die eingezeichnete Kraft in der richtigen Richtung gezeichnet wurde
y x Free Body Diagram wirkliche Kräfte
Free Body Diagram res i(i+1) res i(i+1) F M y i W res i(i-1) M x res i(i-1) F resultierende Kräfte
FaJ FaG FaA y x z wirkliche & resultierende Kräfte Wirkliche Kraft FBD
Annahmen 2-d Muskelkraft nur Achillessehne Alle Kräfte in vertikaler Richtung Gewicht des Fusses vernachlässigt a = 20 cm = Distanz Zehe bis Gelenk b = 5 cm = Distanz Achilles bis Gelenk Keine Reibung zwischen Schuh und Boden FG = ( 0N , BW , 0N )
Bewegungsgleichungen (wirklich) SFay = 0 FaG + FaJ + FaA = 0 SMaA = 0 +(a + b) FaG + b FaJ = 0
Gleichung (2) FaJ = - · FaG FaJ = - · FaG = - 5 FaG FaJ = - 5 BW FaJ = (0N, - 5 BW, 0N) a+b––––b 25(–––)5
Resultierende Kraft y x z FBD FrJy MrJ FrJx MrG FrGx FrGy
Nur vertikale Komponente der Sprunggelenkskraft SFry = 0 FrGy + FrJy = 0FrGy = - FrJymitFrG = ( 0N, BW, 0N ) folglichFrJ = ( 0N, - BW, 0N ) Bewegungsgleichung
Wirkliche und resultierende Kraft • Kraft im Spunggelenk • Wirkliche Kraft FaJ = - 5 BW • Resultierende Kraft FrJ = - 1 BW Welche Kraft würde in Wirklichkeit gemessen?
Resultierender Ansatz • Berechnung von Kräften in Gelenken, die weit weg vom Boden sind (z.B. Hüfte, Knie, ….) • (1) unten anfangen • (2) Segment um Segment • (3) am interessierten Gelenk Kräfte und Momente verteilen.
r 10 r 12 F F r 23 r 21 r 23 r 21 F F r 10 r 12 M M M M 1 W y 2 W x z
Neue Kentnisse • Force system analysis • Innere Kräfte >> Äussere Kräfte • Innere Kräfte = f (Hebelarme) • KAchilles(stehen) 4 Körpergewicht • KSprunggelenk(stehen) 5 Körpergewicht • KGelenk-Fersenlandung << KGelenk-Vorfusslandung