1 / 43

Francesco Puosi 1 , Dino Leporini 2,3

Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassforming systems. Francesco Puosi 1 , Dino Leporini 2,3 1 LIPHY , Université Joseph Fourier , Saint Martin d’Hères , France

lavi
Download Presentation

Francesco Puosi 1 , Dino Leporini 2,3

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Elasticity, caged dynamics and thermodynamics: three (related) scalings of the relaxation in glassformingsystems Francesco Puosi1, Dino Leporini 2,3 1 LIPHY, Université Joseph Fourier, Saint Martin d’Hères, France 2 Dipartimento di Fisica “Enrico Fermi”, Universita’ di Pisa, Pisa, Italia 3 IPCF/CNR, UoS Pisa, Italia

  2. Structural arrest and particle trapping in deeply supercooled states Structural arrest Random walk: cage effect Log h (Poise) < u2 >1/2 DebenedettiandStillinger, 2001

  3. Structural arrest and particle trapping in deeply supercooled states Structural arrest Random walk: cage effect Log h (Poise) < u2 >1/2 • OUTLINE • Cage scaling: ta , h vs. Debye-Waller factor <u2> DebenedettiandStillinger, 2001

  4. Structural arrest and particle trapping in deeply supercooled states Structural arrest Random walk: cage effect Log h (Poise) < u2 >1/2 • OUTLINE • Cage scaling: ta , h vs. Debye-Waller factor <u2> • Elastic scaling: ta, h vs. elastic modulus G • - Elastic scaling and cage scaling: <u2> vs. G/T DebenedettiandStillinger, 2001

  5. Structural arrest and particle trapping in deeply supercooled states Structural arrest Random walk: cage effect Log h (Poise) < u2 >1/2 • OUTLINE • Cage scaling: ta , h vs. Debye-Waller factor <u2> • Elastic scaling: ta, h vs. elastic modulus G • - Elastic scaling and cage scaling: <u2> vs. G/T • Thermodynamic scaling: ta, h vs. rg/T, (density r and temperature T ) • - Thermodynamic scaling and cage scaling: <u2> vs. rg/T DebenedettiandStillinger, 2001

  6. Structural arrest and particle trapping in deeply supercooled states Structural arrest Random walk: cage effect Log h (Poise) < u2 >1/2 • OUTLINE • Cage scaling: ta , h vs. Debye-Waller factor <u2> • Elastic scaling: ta, h vs. elastic modulus G • - Elastic scaling and cage scaling: <u2> vs. G/T • Thermodynamic scaling: ta, h vs. rg/T, (density r and temperature T ) • - Thermodynamic scaling and cage scaling: <u2> vs. rg/T • Conclusions DebenedettiandStillinger, 2001

  7. < u2 >1/2 <u2> = f(G/T ) <u2> = y(rg/T ) Cage scaling ta = F[ <u2> ] ta = F[y(rg/T ) ] ta = F[ f(G/T )] Thermodynamic scaling material-dependent master curve Elastic scaling “universal” master curve

  8. < u2 >1/2 Cage scaling ta = F[ <u2> ] …echoes the Lindemann melting criterion Hall & Wolynes 87, Buchenau & Zorn 92, Ngai 2000, Starr et al 2002, Harrowell et al 2006, Larini et al 2008…

  9. Cage scaling: evidence from the Van Hove function < u2 >1/2 Log <u2> Log MSD MSD(t*) = <u2> Log t* Log ta Log t F. Puosi, DL, JPCB (2011)

  10. Cage scaling: evidence from the Van Hove function Gs(X) (r, t*) = Gs(Y)(r, t*) Gs(X) (r, ta ) = Gs(Y) (r, , ta ) X, Y : generic states < u2 >1/2 Log <u2> Log MSD MSD(t*) = <u2> Log t* Log ta Log t F. Puosi, DL, JPCB (2011)

  11. Cage scaling: evidence from the Van Hove function Gs(X) (r, t*) = Gs(Y)(r, t*) Gs(X) (r, ta ) = Gs(Y) (r, , ta ) X, Y : generic states Polymer melt < u2 >1/2 Log <u2> Log MSD MSD(t*) = <u2> Log t* Log ta Log t F. Puosi, DL, JPCB (2011)

  12. Cage scaling: evidence from the Van Hove function Gs(X) (r, t*) = Gs(Y)(r, t*) Gs(X) (r, ta ) = Gs(Y) (r, , ta ) X, Y : generic states Polymer melt < u2 >1/2 Log <u2> Log MSD MSD(t*) = <u2> Jumps ! Log t* Log ta Log t F. Puosi, DL, JPCB (2011)

  13. Cage scaling: evidence from the Van Hove function Gs(X) (r, t*) = Gs(Y)(r, t*) Gs(X) (r, ta ) = Gs(Y) (r, , ta ) X, Y : generic states Binary mixture < u2 >1/2 Log <u2> Log MSD MSD(t*) = <u2> Log t* Log ta Log t F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

  14. Cage scaling: implications Polymer melt < u2 >1/2 t* Log <u2> Log MSD MSD(t*) = <u2> Log t* Log ta Log t

  15. Cage scaling: implications “rule of thumb 1” < u2 >1/2 Binary mixture, polymer melt Log <u2> Log MSD MSD(t*) = <u2> Log t* Log ta Log t A. Ottochian, C. De Michele, DL, JCP (2009)

  16. Cage scaling: implications “rule of thumb 1” < u2 >1/2 Colloidal gel Log <u2> Log MSD MSD(t*) = <u2> Log t* Log ta Log t C. De Michele, E. Del Gado, DL, Soft Matter (2011)

  17. Cage scaling: implications “rule of thumb 2” Polymer melt Binary mixture t F. Puosi, DL, JPCB (2011) C. De Michele, DL, unpublished

  18. Cage scaling: experimental evidence • Master curve taken from MD simulation • 1 adjustable parameter: t0 or h0 L. Larini et al, Nature Phys. (2008)

  19. < u2 >1/2 <u2> = f(G/T ) Cage scaling ta = F[ <u2> ] ta = F[ f(G/T )] Elastic scaling Elastic models: see RMP review by Dyre (2006)

  20. Elastic scaling in polymer melts Initial affine response, total force per particle unbalanced Transient shear modulus G(t) Gp= G(t*) Log t N.B.: MSD(t*) = <u2> F.Puosi, DL, JCP 041104 (2012)

  21. Elastic scaling in polymer melts Initial affine response, total force per particle unbalanced Transient shear modulus G(t) “Inherent” dynamics: particle moved to the local potential energy minimum Gp= G(t*) Log t N.B.: MSD(t*) = <u2> Fast mechanical equilibration F.Puosi, DL, JCP 041104 (2012)

  22. Elastic scaling in polymer melts G(t) Affine elasticity G∞ Gp ta t* ~ 1-10 ps Log t F.Puosi, DL, JCP 041104 (2012)

  23. Elastic scaling in polymer melts G(t) G∞ Gp ta t* ~ 1-10 ps Log t F.Puosi, DL, JCP 041104 (2012)

  24. Elastic scaling in polymer melts Master curve: Log ta = a + b G/T + g [ G/T ]2 a, b, g : constants Modulus term matters: evidence from one isothermal set Not another variant of the Vogel-Fulcher law ta = f(T)… No adjustments

  25. Elastic scaling: building the master curve 1/ <u2> G/ T MD simulations: polymer • The elastic scaling works for the • Debye-Waller factor <u2>, F.Puosi, DL, arXiv:1108.4629v1, to be submitted

  26. Elastic scaling: building the master curve 1/ <u2> G/ T MD simulations: polymer • The elastic scaling works for the • Debye-Waller factor <u2>, F.Puosi, DL, arXiv:1108.4629v1, to be submitted

  27. Elastic scaling: building the master curve <u2> = f(G/T ) 1/ <u2> G/ T ta = F[ <u2> ] MD simulations: polymer ta = F[ f(G/T )] • The elastic scaling works for the • Debye-Waller factor <u2>, F.Puosi, DL, arXiv:1108.4629v1, to be submitted

  28. Elastic scaling: building the master curve <u2> = f(G/T ) 1/ <u2> G/ T ta = F[ <u2> ] Experiments ta = F[ f(G/T )] • The elastic scaling works for the • Debye-Waller factor <u2>, • the experimental master curve • follows from the MD simulations G/T • ( Tg /Gg) F.Puosi, DL, arXiv:1108.4629v1, to be submitted

  29. < u2 >1/2 <u2> = y(rg/T ) Cage scaling ta = F[ <u2> ] ta = F[y(rg/T ) ] Thermodynamic scaling Thermodynamic scaling: see review by Roland et al, Rep. Prog. Phys. (2005)

  30. Thermodynamic scaling in Kob-Andersen binary mixture rg/T • The thermodynamic scaling works • for the Debye-Waller factor <u2>, F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013)

  31. Thermodynamic scaling in Kob-Andersen binary mixture • The thermodynamic scaling works • for the Debye-Waller factor <u2>, rg/T F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013) Cage scaling fails for ta < 1

  32. Thermodynamic scaling in Kob-Andersen binary mixture <u2> = y(rg/T ) ta = F[ <u2> ] ta = F[y(rg/T )] • The thermodynamic scaling works • for the Debye-Waller factor <u2>, rg/T F. Puosi, C. De Michele, DL, JCP 138, 12A532 (2013) Cage scaling fails for ta < 1

  33. Thermodynamic scaling from Debye-Waller factor: comparison with the experiment preliminary results propylen carbonate The master curve of the thermodynamic scaling follows from the MD simulations with one adjustable parameter: the isochoric fragility F. Puosi, O. Chulkin, S. Capaccioli, DL to be submitted

  34. Conclusions • Cage scaling ( tavs<u2> ): • Results suggest that <u2> is a “universal” picosecond predictor of the a relaxation. • Tested on different MD models: polymers, binary atomic mixtures, colloidal gels… • - The MD master curve fits (with one adjustable parameter) the scaling of the • experimental data covering over ~ 18 decades in ta drawn by glassformers • in the fragility range 20 ≤ m ≤ 190. < u2 >1/2

  35. Conclusions • Cage scaling ( tavs<u2> ): • Results suggest that <u2> is a “universal” picosecond predictor of the a relaxation. • Tested on different MD models: polymers, binary atomic mixtures, colloidal gels… • - The MD master curve fits (with one adjustable parameter) the scaling of the • experimental data covering over ~ 18 decades in ta drawn by glassformers • in the fragility range 20 ≤ m ≤ 190. • Elastic scaling ( tavsG/T): • - Intermediate-time shear elasticity and <u2> are highly correlated. • MD master curve tavsG/T drawn by using the cage scaling. • The MD master curve fits (with one adjustable parameter) the scaling • of the experimentaldata covering over ~ 18 decades in ta drawn by • glassformers in the fragility range 20 ≤ m ≤ 115. < u2 >1/2

  36. Conclusions • Cage scaling ( tavs<u2> ): • Results suggest that <u2> is a “universal” picosecond predictor of the a relaxation. • Tested on different MD models: polymers, binary atomic mixtures, colloidal gels… • - The MD master curve fits (with one adjustable parameter) the scaling of the • experimental data covering over ~ 18 decades in ta drawn by glassformers • in the fragility range 20 ≤ m ≤ 190. • Elastic scaling ( tavsG/T): • - Intermediate-time shear elasticity and <u2> are highly correlated. • MD master curve tavsG/T drawn by using the cage scaling. • The MD master curve fits (with one adjustable parameter) the scaling • of the experimentaldata covering over ~ 18 decades in ta drawn by • glassformers in the fragility range 20 ≤ m ≤ 115. • Thermodynamicscaling ( tavsrg/T ) • <u2> scales with rg/T . Extensive MD simulations in progress • MD master curve tavsrg/T drawn by using the cage scaling. • Good comparison with the experimental data on a single glassformer (13 decades in ta ) • by adjusting the isochoric fragility only. Work in progress… < u2 >1/2

  37. Credits Collaborators: • C. De Michele, Ric TD Roma • L. Larini, Ass. Prof. Rutgers University • A. Ottochian, Postdoc ’Ecole Centrale Paris • F. Puosi, Postdoc Univ. Grenoble 1 • S. Bernini PhD Pisa • O. Chulkin Postdoc Odessa • M. Barucco Graduate Pisa

  38. <u2> 1/ <u2> rg/ T G/ T

  39. Log < Dr2 (t) > < u2 >1/2 Log <u2> Log t* Log t t* ~ 1-10 ps Log Fs (qmax , t) Log ta Log t

  40. F. Puosi, DL, JPCB (2011) C. De Michele, F. Puosi, DL, unpublished

  41. MD simulations Density r Temperature T Chain length M (polymer) Potential: p, q

  42. First “universal” scaling: structural relaxation time ta or viscosity h vs.Debye-Waller factor < u2> (rattling amplitude in the cage) ta ~ 10 26 s < u2 >1/2 1017 s (eta’ dell’universo)

  43. Cage scaling: implications Gs(X) (r, t*) = Gs(Y)(r, t*) Gs(X) (r, ta ) = Gs(Y) (r, , ta ) Polymer melt Log <u2> Log MSD Log t* Log ta Log t

More Related