1 / 11

High Level Trigger Studies for the ATLAS Detector Efstathios (Stathis) Stefanidis

High Level Trigger Studies for the ATLAS Detector Efstathios (Stathis) Stefanidis University College London. OUTLINE. The ATLAS Detector : Overview. The Trigger System. Overview. High Level Trigger. Performance Studies. IDScan. e/ γ vertical slice. RoI size. Future Plans.

lavina
Download Presentation

High Level Trigger Studies for the ATLAS Detector Efstathios (Stathis) Stefanidis

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. High Level Trigger Studies for the ATLAS Detector Efstathios (Stathis) Stefanidis University College London Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  2. OUTLINE • The ATLAS Detector : Overview. • The Trigger System. • Overview. • High Level Trigger. • Performance Studies. • IDScan. • e/γ vertical slice. • RoI size. • Future Plans. Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  3. The ATLAS Detector: Overview. • pp colliding beams 14 TeV c.m. energy. • Design Luminosity: L=1034 cm-2s-1. • Three Parts: • Inner Detector • Calorimeter (EM – HAD) • Muon Spectrometer • Magnet System: • Solenoid: 2 T • Toroid: 0.4 T Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  4. High Level Trigger (HLT) The Trigger System: Overview. • LVL1: • 40 MHz  75 kHz • < 2.5 μs • Hardware trigger • Reduced granularity information • LVL2: • 75 kHz  2 kHz • 10 ms • Full granularity information from both ID and Calorimeter • RoI mechanism • Event Filter (EF): • 2 kHz  100 Hz •  2s • Sophisticated algorithms • Alignment data available Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  5. The Trigger System: HLT. • Event Selection Strategy: • Signature validation • Checks for signatures coming from interesting physics events • REJECT UNINTERESTING EVENTS VERY EARLY • RoI mechanism • (i) Defines the area where HLT • will start from. • (ii) Seeded by LVL1 • (iii) Only the data needed are • transferred •  MINIMISE THE PROCESSING TIME AND NETWORK TRAFFIC Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  6. The Trigger System: HLT. • Event Selection Software: • ATHENA • Written using GAUDI architecture • Provides common services (Transient Data Store, Histograms, Auditing etc) • Well-defined interface not only to developers but also to the end-users • IMPROVE COHERENCY OF THE DIFFERENT SOFTWARE DOMAINS • IDScan • LVL2 track reconstruction algorithm • SPACE POINTS as input – Track parameters as output • Runs several times per event and once per RoI Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  7. Performance Studies: IDScan. Pattern Recognition • |pTgen – pTrec|<15 GeV • |ηgen – ηrec|<0.01 • |φgen – φrec|<0.01 rads Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  8. Electron selection • Weνe sample 22.5 GeV Performance Studies: e/γ slice. • Determine selection efficiencies and rates at each Trigger Level. • Apply isolation, energy, tracking matching etc cuts. Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  9. Performance Studies: RoI size. • How is the RoI constructed? • Take the information from LVL1 Calo : (η,φ) of the active region. The η coordinate is calculated w.r.t to z=0 • Construct the shape of the RoI: • z=0 ± 168 mm (3 of the beam spread) • η ± 0.1 • φ ± 0.1 rad • Motivation? • Optimize the size of the RoI. • Less Space Points. • Less Combinatories. • Quicker Algorithms. • Improve efficiency. Implementation? Use the shower position at the 1st and 2nd EM sampling. Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  10. Z vertex resolution Phi vertex resolution Theta vertex resolution σ_low = 3.626 cm σ_high = 3.593 cm σ_low = 1.719 mrad σ_high = 1.692 mrad σ_low = 14.26 mrad σ_high = 14.11 mrad Performance Studies: RoI size. Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

  11. Physics Studies • Low Mass Higgs (mH<150 GeV) • Hγγ • Hbb • Study the full production/simulation/reconstruction chain. Future Plans. • Performance Studies • IDScan : Optimize the size the RoI • e/γ analysis : Improve, validate, optimize the cuts Efstathios (Stathis) Stefanidis sstef@hep.ucl.ac.uk http://www.hep.ucl.ac.uk/~sstef

More Related