210 likes | 498 Views
Color wavelet covariance(CWC) Texture feature. 2013-06-04 Jo Yeong -Jun. Karkanis , Stavros A., et al. " Computer-aided tumor detection in endoscopic video using color wavelet features ." Information Technology in Biomedicine, IEEE Transactions on 7.3 (2003): 141-152. C ontent.
E N D
Color wavelet covariance(CWC) Texture feature 2013-06-04 Jo Yeong-Jun Karkanis, Stavros A., et al. "Computer-aided tumor detection in endoscopic video using color wavelet features." Information Technology in Biomedicine, IEEE Transactions on 7.3 (2003): 141-152.
Content • Introduction • Haralick texture features • Color wavelet covariance(CWC) texture feature • DWT transformation • Statistical measures (from haralick) • Covariance between color channels • Experimental Results
Computer-aided tumor detection in endoscopic video using color wavelet features Introduction • What is texture? • Texture의 사전적 정의 • 질감(質感) : 재질의 차이에서 받는 느낌. • Image texture • Pixel intensities의 변화에 따른 반복적 패턴. • 이미지의 색 배열, intensities 등의 정보를 나타냄. • 공개 Database BrodatzVistex Textures Textures Artificial texture Natural texture
Computer-aided tumor detection in endoscopic video using color wavelet features Introduction • Color wavelet covariance feature(CWC) • Color wavelet covariance(CWC) feature는 텍스처 분석 feature. • 2003년 CWC가 대장 용종 검출에 사용된 후,용종 검출 뿐만 아니라 의료 영상 분석에 많이 사용됨. • 1973년에 제안된 haralick texture feature[1] 중 distinctiveness가 있는 몇 개의 measure를 이용. • Discrete wavelet transform(DWT)를 통해 texture를 잘 표현하는 주파수 대역을 이용 [2]. • 최종적으로 Color space(RGB)간의 관계를 feature로 정의 함 [3]. [1] Haralick, Robert M., KarthikeyanShanmugam, and Its' HakDinstein. "Textural features for imageclassification." Systems, Man and Cybernetics, IEEE Transactions on 6 (1973): 610-621. [2] Julesz, Bela. "Texton gradients: The texton theory revisited." Biological Cybernetics 54.4-5 (1986): 245-251. [3] Van de Wouwer, Gert, et al. "Wavelet correlation signatures for color texture characterization." Patternrecognition 32.3 (1999): 443-451.
Haralick Texture features
Computer-aided tumor detection in endoscopic video using color wavelet features Haralick texture features • Assumption • 이미지의 각 픽셀은 주변 픽셀과 공간적인 관계가 있음. • Gray level co-occurrence matrix(GLCM) • 픽셀간의 공간적 관계를 나타내는 행렬 0˚ 45˚ 90˚ 135˚ 0 1 2 3 0 1 2 3 4 gray-level image GLCM Normalized GLCM
Computer-aided tumor detection in endoscopic video using color wavelet features Haralick texture features • Extract features from GLCM • 제안된 14가지의 statistical features를 GLCM에서 계산. • 각각의 feature는 각기 다른 통계적 성질을 분석하는 measure. Feature Extraction GLCM Haralick feature (14 dimension)
Computer-aided tumor detection in endoscopic video using color wavelet features Haralick texture features • Ex : 두가지 이미지에서 뽑힌 haralick features Grassland Ocean
Computer-aided tumor detection in endoscopic video using color wavelet features Color wavelet covariance(CWC) texture feature • Haralick features의 14가지 feature중 가장분별력 있는 4가지 feature 조합을 이용. • Angular second moment • Correlation • Inverse difference moment • Entropy • 14가지 중 서로 correlation이 작은 것들을 선택함. • Correlation이 크면 dependent하기 때문에 쓸데 없는 정보일 수 있음. 14 haralick statistics measures
Computer-aided tumor detection in endoscopic video using color wavelet features Color wavelet covariance(CWC) texture feature • Discrete wavelet transform(DWT)이용 H(z) ↓ HH • 이미지 압축 기법인 JPEG2000에서 사용. • 각각의 변환 이미지들은 각 대역폭에서의 밝기 변화를 묘사. • 이미지의 패턴분석에 사용. H(z) ↓ HL L(z) ↓ LL LH H(z) ↓ LH L(z) ↓ HL HH 3 level DWT LL L(z) ↓ Row 방향 Column 방향
Computer-aided tumor detection in endoscopic video using color wavelet features Color wavelet covariance(CWC) texture feature • 3 level DWT 에서 texture를 가장 잘 표현하는 level을 이용. • Julesz, Bela.[2] 에 따르면,DWT의 Second-order 정보가 가장 Texture를 잘 나타낸다고 알려짐. B(i=3) g(i=2) R(i=1) (3- channel) 3 level DWT [2] Julesz, Bela. "Texton gradients: The texton theory revisited." Biological Cybernetics 54.4-5 (1986): 245-251.
Computer-aided tumor detection in endoscopic video using color wavelet features Color wavelet covariance(CWC) texture feature Co-occurrence matrix B(i=3) g(i=2) R(i=1) 4 Haralick features (3- channel) • 1. Angular second moment • 2. Correlation • 3. Inverse difference moment • 4. Entropy
Computer-aided tumor detection in endoscopic video using color wavelet features Color wavelet covariance(CWC) texture feature • 마지막으로 color space들 간의 covariance를 고려. • Van de Wouwer, Gert, et al.[3] 에 따르면,이미지의 각 color space들은 서로 밀접한 관계를 가진다.이러한 경향성을 이용하면 효과적으로 Texture 를 정의 할 수 있다. [3] Van de Wouwer, Gert, et al. "Wavelet correlation signatures for color texture characterization." Pattern recognition 32.3 (1999): 443-451.
Computer-aided tumor detection in endoscopic video using color wavelet features Color wavelet covariance(CWC) texture feature • 과정 정리 • 1. ASM • 2. Correlation • 3. IDM • 4. Entropy 각 채널에서 추출된 Feature간 Covariance 계산 Input image level DWT (3- channel) Co-occurrence matrices Statistical feature extraction B(i=3) g(i=2) R(i=1)
Computer-aided tumor detection in endoscopic video using color wavelet features Experimental results
Computer-aided tumor detection in endoscopic video using color wavelet features Experimental results Specificity = True negative/전체 Negative Sensitivity = True positive /전체 Positive
Computer-aided tumor detection in endoscopic video using color wavelet features Experimental results
Experimental results [1] Iakovidis, D. K., et al. "A comparative study of texture features for the discrimination of gastric polyps in endoscopic video." Computer-Based Medical Systems, 2005. Proceedings. 18th IEEE Symposium on. IEEE, 2005. [2]Alexandre, Luís A., NunoNobre, and JoãoCasteleiro. "Color and position versus texture features for endoscopic polyp detection." BioMedical Engineering and Informatics, 2008. BMEI 2008. International Conference on. Vol. 2. IEEE, 2008.