1 / 16

Sociology 601 Class 23: November 17, 2009

Sociology 601 Class 23: November 17, 2009. Homework #8 Review spurious, intervening, & interactions effects stata regression commands & output F-tests and inferences (A&F 11.4). Review: Types of 3-variable Causal Models. Spurious x 2 causes both x 1 and y

lelia
Download Presentation

Sociology 601 Class 23: November 17, 2009

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Sociology 601 Class 23: November 17, 2009 • Homework #8 • Review • spurious, intervening, & interactions effects • stata regression commands & output • F-tests and inferences (A&F 11.4)

  2. Review: Types of 3-variable Causal Models • Spurious • x2 causes both x1 and y • e.g., age causes both marital status and earnings • Intervening • x1 causes x2 which causes y • e.g., marital status causes more hours worked which raises annual earnings • No statistical difference between these models. • Statistical interaction effects: The relationship between x1 and y depends on the value of another variable, x2 • e.g., the relationship between marital status and earnings is different for men and women.

  3. Review: Causal Models with earnings & marital status • bivariate relationship: • married earnings • spuriousness: • 2. married earnings • age • intervening: • 3. married hours earnings • interaction effect: • married earnings • gender

  4. Review: Stata Commands • describe • summarize • tab • tab xcat, sum(yvar) • drop if / keep if • gen / replace • ttest • regress • predict / predict, residuals • histogram / scattergram • graph box yvar, over(xvar)

  5. Review: Regression models using Stata • see: • http://www.bsos.umd.edu/socy/vanneman/socy601/conrinc.do

  6. Review: Regression models with Earnings, Marital status and Age • bivariate relationship: • . * association of earnings and marital status: • . regress conrinc married • Source | SS df MS Number of obs = 725 • -------------+------------------------------ F( 1, 723) = 31.29 • Model | 1.9321e+10 1 1.9321e+10 Prob > F = 0.0000 • Residual | 4.4645e+11 723 617501240 R-squared = 0.0415 • -------------+------------------------------ Adj R-squared = 0.0402 • Total | 4.6577e+11 724 643334846 Root MSE = 24850 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • married | 10383.4 1856.279 5.59 0.000 6739.057 14027.74 • _cons | 35065.27 1380.532 25.40 0.000 32354.94 37775.6 • ------------------------------------------------------------------------------ • . spuriousness (partial): • . * age makes the marriage-earnings relationship partly spurious: • . regress conrinc married age • Source | SS df MS Number of obs = 725 • -------------+------------------------------ F( 2, 722) = 36.20 • Model | 4.2454e+10 2 2.1227e+10 Prob > F = 0.0000 • Residual | 4.2332e+11 722 586315863 R-squared = 0.0911 • -------------+------------------------------ Adj R-squared = 0.0886 • Total | 4.6577e+11 724 643334846 Root MSE = 24214 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • married | 8243.081 1840.613 4.48 0.000 4629.489 11856.67 • age | 702.0977 111.7749 6.28 0.000 482.6551 921.5403 • _cons | 8836.284 4387.025 2.01 0.044 223.4344 17449.13 • ------------------------------------------------------------------------------

  7. Review: Regression models with Earnings, Marital status and Hours Worked • Intervening variable relationship (hours worked): • . * hours worked explains some of how marital status increases earnings: • . regress conrinc married age hrs1 • Source | SS df MS Number of obs = 664 • -------------+------------------------------ F( 3, 660) = 25.02 • Model | 4.4322e+10 3 1.4774e+10 Prob > F = 0.0000 • Residual | 3.8970e+11 660 590458672 R-squared = 0.1021 • -------------+------------------------------ Adj R-squared = 0.0980 • Total | 4.3402e+11 663 654637868 Root MSE = 24299 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • married | 7328.527 1934.225 3.79 0.000 3530.551 11126.5 • age | 631.5836 117.8463 5.36 0.000 400.1848 862.9824 • hrs1 | 281.3472 71.47315 3.94 0.000 141.0051 421.6894 • _cons | -232.1376 5465.426 -0.04 0.966 -10963.86 10499.58 • ------------------------------------------------------------------------------ • But: problem with N! • Create new hours worked: • . gen hrs=hrs1 • (101 missing values generated) • . replace hrs=hrs2 if hrs1>=. • (24 real changes made, 2 to missing) • . replace hrs=0 if hrs1>=. & wrkstat>=3 • (101 real changes made)

  8. Review: Regression models with Earnings, Marital status and Hours Worked • Intervening variable relationship (revised hours worked): • . regress conrinc married age hrs • Source | SS df MS Number of obs = 725 • -------------+------------------------------ F( 3, 721) = 36.27 • Model | 6.1081e+10 3 2.0360e+10 Prob > F = 0.0000 • Residual | 4.0469e+11 721 561294582 R-squared = 0.1311 • -------------+------------------------------ Adj R-squared = 0.1275 • Total | 4.6577e+11 724 643334846 Root MSE = 23692 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • married | 7465.107 1805.967 4.13 0.000 3919.526 11010.69 • age | 640.1643 109.891 5.83 0.000 424.4197 855.9089 • hrs | 278.3368 48.31685 5.76 0.000 183.4783 373.1954 • _cons | -493.7634 4587.79 -0.11 0.914 -9500.786 8513.259 • ------------------------------------------------------------------------------ • b(married) reduced to 7465.1 from 8243.1 (N= 725 for both)

  9. Review: Regression models with Earnings Marital status, Age, and Hours worked.

  10. Review: Regression models with Earnings and Marital status, separately by Gender • Statistical Interaction Effect: • . * association of earnings and marital status for men: • . regress conrinc married if sex==1 • Source | SS df MS Number of obs = 725 • -------------+------------------------------ F( 1, 723) = 31.29 • Model | 1.9321e+10 1 1.9321e+10 Prob > F = 0.0000 • Residual | 4.4645e+11 723 617501240 R-squared = 0.0415 • -------------+------------------------------ Adj R-squared = 0.0402 • Total | 4.6577e+11 724 643334846 Root MSE = 24850 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • married | 10383.4 1856.279 5.59 0.000 6739.057 14027.74 • _cons | 35065.27 1380.532 25.40 0.000 32354.94 37775.6 • ------------------------------------------------------------------------------ • . * association of earnings and marital status for women: • . regress conrinc married if sex==2 • Source | SS df MS Number of obs = 749 • -------------+------------------------------ F( 1, 747) = 0.26 • Model | 106732224 1 106732224 Prob > F = 0.6129 • Residual | 3.1118e+11 747 416578779 R-squared = 0.0003 • -------------+------------------------------ Adj R-squared = -0.0010 • Total | 3.1129e+11 748 416164546 Root MSE = 20410 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • married | 755.3387 1492.253 0.51 0.613 -2174.17 3684.848 • _cons | 26201 1038.855 25.22 0.000 24161.57 28240.42 • ------------------------------------------------------------------------------

  11. Inferences: F-tests of global model • Ho : β1 = β2 = ... βk = 0 • α or β0 ? • F-tests of H0: • Calculate new test statistic, F • ratio of “explained variance” / “unexplained variance” • F-distribution: ratio of chi-square distributions • df1 (numerator); df2 (denominator) • if df1=1, then F = t2 • Table D, pages 671-673 • Global F-test less useful (almost always significant unless you have a really bad model or very small N). • Base for F-test comparing regression models (later)

  12. F-test: Method 1, STATA output • . regress conrinc married age hrs1 • Source | SS df MS Number of obs = 725 • -------------+------------------------------ F( 3, 721) = 36.27 • Model | 6.1081e+10 3 2.0360e+10 Prob > F = 0.0000 • Residual | 4.0469e+11 721 561294582 R-squared = 0.1311 • -------------+------------------------------ Adj R-squared = 0.1275 • Total | 4.6577e+11 724 643334846 Root MSE = 23692 • ------------------------------------------------------------------------------ • conrinc | Coef. Std. Err. t P>|t| [95% Conf. Interval] • -------------+---------------------------------------------------------------- • married | 7465.107 1805.967 4.13 0.000 3919.526 11010.69 • age | 640.1643 109.891 5.83 0.000 424.4197 855.9089 • hrs | 278.3368 48.31685 5.76 0.000 183.4783 373.1954 • _cons | -493.7634 4587.79 -0.11 0.914 -9500.786 8513.259 • ------------------------------------------------------------------------------ • df1 = 3 (= k = # parameters = β(married), β(age), β(hrs) ) • df2 = 721 [ = N – (k+1) = 725 – (3+1) ] • F(3,721) = 2.60 (α = .05); 36.27 >> 2.60

  13. F-test: Method 2, using R-square

  14. F-test: Method 3, using SSE and Model SS F = 2.0360e+10 / 561294582 =36.27

  15. Inferences: βi • H0: βi = 0 • what we are usually most interested in • test statistic:

  16. Next: Regression with Dummy Variables • Agresti and Finlay 12.3 • (skim 12.1-12.2 on analysis of variance) • Example: marital status, 3 categories • currently married • never married • widowed • separated • divorced

More Related