1 / 17

Praktiske opplysninger Endret detaljert undervisningsplan Oppgaveliste for 2. utgave og 3. Utgave Studentversjon SPSS ”C

Praktiske opplysninger Endret detaljert undervisningsplan Oppgaveliste for 2. utgave og 3. Utgave Studentversjon SPSS ”Casino”: Appelsin eller Porsche? Eksempel på betinget sannsynlighet…. Kap. 3. Tilfeldighet og sannsynlighet. Sannsynlighetsregning er ren matematikk/logikk/apriori kunnskap

lenore
Download Presentation

Praktiske opplysninger Endret detaljert undervisningsplan Oppgaveliste for 2. utgave og 3. Utgave Studentversjon SPSS ”C

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Praktiske opplysninger • Endret detaljert undervisningsplan • Oppgaveliste for 2. utgave og 3. Utgave • Studentversjon SPSS • ”Casino”: Appelsin eller Porsche? • Eksempel på betinget sannsynlighet…

  2. Kap. 3. Tilfeldighet og sannsynlighet • Sannsynlighetsregning er ren matematikk/logikk/apriori kunnskap • Sannsynlighetsregning kan gi nyttige beskrivelser av anvendte situasjoner (terningspill, kortspill, kjønn på nyfødt) • Eksempel: Urne med 100 kuler, 50 hvite og 50 sorte. • Trekk en kule uten å se. Sannsynligheten for å trekke en hvit kule? • Hva er sannsynligheten for å trekke en hvit kule når man allerede har trukket en hvit? • Hva er sannsynligheten for å trekke en hvit kule hvis de sorte kulene er litt tyngre og har en tendens til å komme lenger ned i urnen? • Hva er sannsynligheten for å trekke en hvit kule når man vet at det er 100 kuler totalt, men ikke hvor mange av hver farge? • Statistisk/matematisk modell: Forenklet konstruksjon. Logisk konsistent • Empirisk relevans er et annet spørsmål. Hvor god er tilnærmingen? • Golf: Sannsynlighet for å treffe. Sannsynlighet for å bomme. • Sannsynlighet for at ballen blir tatt av en rev? • Eller en ravn?

  3. ”Formell” sannsynlighetsregning • Def: Et stokastisk (tilfeldig) forsøk er et forsøk der utfallet ikke er entydig bestemt • Def: Utfallsrommet er en liste over alle mulige utfall av et stokastisk forsøk • Eks: • Myntknipsing: S={Mynt, Kron} • Terningkast, en terning: S={1,2,3,4,5,6} • Terningkast, to terninger, antall øyne: S={1,2,…,12}

  4. Def: En begivenhet er en delmengde av utfallrommet • Eks: Kast med to terninger • Begivenhet A: Totalt antall øyne er delelig med 2. {2,4,6,8,10,12} • Begivenhet B: Totalt antall øyne er delelig med 3. {3,6,9,12}

  5. Definisjon av sannsynlighet

  6. Sannsynligheter for begivenheter

  7. Anvendelse. Gunstige/mulige-metoden • Antall mulige utfall: Utfallsrommet • Antall gunstige utfall: Antall utfall som inngår i en begivenhet. • Eksempel: • Et knips med mynt: • Antall mulige utfall {kron, mynt} • Begivenhet {Kron} • Gunstig utfall for denne begivenheten: Kron (Ugunstig: mynt)

  8. Eksempel: • Et terningkast med en terning: • Antall mulige utfall {1, 2, 3, 4, 5, 6} • Begivenhet {utfallet er et partall} • Gunstige utfall: {2,4,6} • Et kast med to terninger: • Antall mulige utfall: 36 • Begivenhet:{minst en sekser} • Gunstige utfall: {(1;6),(2;6),(3;6),(4;6),(5;6),(6,6),(6,5),(6;4),(6;3),(6;2),(6;1)}. • Hvis lik sannsynlighet for alle mulige utfall, så er sannsynligheten for et gunstig utfall 11/36.

  9. Betinget sannsynlighet • Def: Betinget sannsynlighet • Sanns. for at begge begivenheter skal inntreffe: • Sanns. for at A skal inntreffe, gitt at B inntreffer

  10. Multiplikasjonsregelen: • Eksempel:

  11. forts.

  12. Stokastisk uavhengighet • Def. • Regel (fra multiplikasjonsregelen):

  13. Nyttig regel: • Eksempel 3.5 (barnefødsler, s. 57)

  14. Bayes’ lov • Utledning

More Related