140 likes | 253 Views
Adaptation. A , B or C. Incoherent feed-forward loop. Local linearization and transient dynamics. C. A. B. C. Nullclines and critical points. Cribsheet of almost linear stability analysis. ?. ?. ?. ?. ?. t. B. Incoherent feed forward loop. -1. +1. A. +1. -1. b. E B. E F.
E N D
Adaptation A, BorC Incoherent feed-forward loop Local linearization and transient dynamics C A B C Nullclines and critical points Cribsheet of almost linear stability analysis ? ? ? ? ? t B
Incoherent feed forward loop -1 +1 A +1 -1 b EB EF a b’ B B c’ C C C g d
Incoherent feed forward loop -1 +1 A 1 1 b EB EF Parameter ranges: 0, << 1, ~1, >>1 a b’ B B c’ C C C 1 1 1/2 g d
Incoherent feed forward loop Input A b EB EF a b’ B B c’ C C C Inhibitory Activating g d Output
Nullclines and critical points E.g. A = 1/2 C E.g. A = 1 A 2.0 B C 1.5 1.0 CC at A = 1 is the sameas CC at A = 1/2 owing to compensatory changes in the effects of A and B on C 0.5 STOP B 0 0.5 1.0 1.5 2.0
Adaptation A, BorC Incoherent feed-forward loop Local linearization and transient dynamics C A B C Nullclines and critical points Cribsheet of almost linear stability analysis ? ? ? ? ? t B
Local linearizations E.g. A = 1/2 C E.g. A = 1 A 2.0 B C 1.5 DC 1.0 0.5 0.5 B DB 0 0.5 0.5 1.0 1.5 2.0
Local linearizations E.g. A = 1/2 C E.g. A = 1 A 2.0 B C 1.5 Squared terms 1.0 0.5 B 0 0.5 1.0 1.5 2.0
Local linearizations E.g. A = 1/2 C E.g. A = 1 A 2.0 B C 1.5 1.0 If A = 1/2, 0.5 B 0 0.5 1.0 1.5 2.0
Local linearizations E.g. A = 1/2 C E.g. A = 1 A 2.0 B C 1.5 1.0 If A = 1/2, If A = 1, 0.5 B 0 0.5 1.0 1.5 2.0
Putting it together E.g. A = 1/2 C E.g. A = 1 A 2.0 B C 1.5 1.0 0.5 B 0 0.5 1.0 1.5 2.0
Putting it together E.g. A = 1/2 A, BorC C E.g. A = 1 A A Transient 1.1 2.0 1.0 Before B B Late C C 0.9 A= 1/2 1.5 0.8 A= 1 0.7 1.0 0.6 0.5 0.5 0 10 -5 5 15 B t 0 0.5 1.0 1.5 2.0
Adaptation A, BorC Incoherent feed-forward loop Local linearization and transient dynamics C A B C Nullclines and critical points Cribsheet of almost linear stability analysis ? ? ? ? ? t B
The big cribsheet of almost linear stability analysis Node Star Degenerate node Spiral Check shape ? ? Node Center Check stability ? Star Degenerate node Spiral Saddle Check shape ? ?