1 / 13

Diferensial Lebih Dari Satu Variabel Orde Lebih Tinggi

Diferensial Lebih Dari Satu Variabel Orde Lebih Tinggi. Turunan Parsial. Z = f(x,y). Diferensial Total Suatu Fungsi. w = f(x,y,z) Turunan Total. Diferensiasi Fungsi Implisit. u = f(x,y) Biaya Marginal Fungsi biaya c = Q(x,y) x,y dua komoditi. Fungsi Biaya Marginal. Biaya Marginal

lester-shaw
Download Presentation

Diferensial Lebih Dari Satu Variabel Orde Lebih Tinggi

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Diferensial Lebih Dari Satu Variabel Orde Lebih Tinggi

  2. Turunan Parsial Z = f(x,y)

  3. Diferensial Total Suatu Fungsi w = f(x,y,z) Turunan Total

  4. Diferensiasi Fungsi Implisit u = f(x,y) Biaya Marginal Fungsi biaya c = Q(x,y) x,y dua komoditi

  5. Fungsi Biaya Marginal Biaya Marginal Fungsi biaya c = Q(x,y) x,y dua komoditi = biaya marginal terhadap x = biaya marginal terhadap y

  6. Permintaan Marginal Fungsi Permintaan = permintaan marginal x terhadap p = permintaan marginal x terhadap q = permintaan marginal y terhadap p = permintaan marginal y terhadap q

  7. Permukaan Permintaan Jumlah komoditi yang dimintai X dan y unit Harga masing-masing p dan q smu Fungsi permintaan X = f(p,q) y = g(p,q)

  8. Produktivitas Marginal Dalil Euler z = f(x,y) f( x, y) = f(x,y) z homogen berderajat n n>0 homogen positif n=1 homogen linear

  9. z=f(x,y) homogen positif berderajat n dan punya turunan parsial orde pertama, dan

  10. Maksimum dan minimum fungsi Maksimum kalau Minimum kalau <0 bukan maks,min dan =0 gagal

  11. Maksimum dan Minimum fungsi dengan kendala Pengali Lagrange f(x,y) dengan pembatasan g(x,y)=0 F(x,y, )=f(x,y)- g(x,y)

More Related