631 likes | 747 Views
The First DIRECT Distance to M33. Alceste Bonanos Carnegie - DTM March 8 th , 2006. Collaborators. Kris Stanek Tom Matheson Rolf Kudritzki Barbara Mochejska Lucas Macri Norbert Przybilla Dimitar Sasselov Andrew Szentgyorgyi
E N D
The First DIRECT Distance to M33 Alceste Bonanos Carnegie - DTM March 8th, 2006
Collaborators Kris Stanek Tom Matheson Rolf Kudritzki Barbara Mochejska Lucas Macri Norbert Przybilla Dimitar Sasselov Andrew Szentgyorgyi Janusz Kaluzny John Tonry David Bersier Guillermo Torres Fabio Bresolin Peter Stetson
Outline • Motivation • DIRECT Project • Distance to M33 • Implications • Massive Binaries
Distance Ladder Astronomy Today, Chaisson & McMillan
Cepheid Period-Luminosity Relation Leavitt & Pickering (1912)
Cepheid Period-Luminosity Relation Udalski et al. (1999)
Anchor Galaxy Large Magellanic Cloud (LMC)
Distance Modulus to the LMC HST Key Project 21 methods Benedict et al. (2002)
LMC Systematic Errors • Zeropoint of P-L relation • Elongation of LMC • Variable reddening across LMC • Metallicity dependence of P-L relation • 10% - 15% uncertainty • in the LMC distance • and the distance scale! Nikolaev et al. (2004)
Why Distances? Improve accuracy (currently ~ 10%) Vital for • calibrating stellar luminosities • determining H0 • constraining dark energy equation of state
“… to test the cosmological constant hypothesis and measure the equation of state of the dark energy at z~0.4-0.5, the best complement to current and future CMB measurements is a measurement of the Hubble constant that is accurate at the few percent level.” -Wayne Hu (2005)
The DIRECT Project • K. Stanek, J. Kaluzny, D. Sasselov, J. Tonry, M. Mateo, • M. Krockenberger, B. Mochejska, L. Macri, R. Kudritzki, • A. Bonanos • Bypass LMC • Obtain direct distance to M31 and M33 with • Detached eclipsing binaries • Baade-Wesselink method for Cepheids
Detached Eclipsing Binaries Modern Astrophysics, Carroll & Ostlie
Detached Eclipsing Binaries Light curves: period, inclination, eccentricity, , fractional radii, flux ratio temperature ratio Spectra: radial velocity semi-amplitudes, eccentricity, , effective temperatures intrinsic color, reddening Kepler’s law: semi-major axis of orbit, radii, masses
DEB Distance Observed binary flux (de-reddened) fλ = R12 F1(T1, log g1) [1 + (R2/R1)2 F2/F1] / d2 F1(T1, log g1) from model atmosphere after spectral analysis T1 R1, R2 and F2/F1 known from light curve g1 = G M1/R12 from radial velocity curve
DIRECT Observations 1996-1999:200 full/partial nights on FLWO 1.2 meter and MDM 1.3 meter 1999, 2001:27 nights on KPNO 2.1 meter 2002-2004:11half nights on Keck 10 meter 2004:17 hours on Gemini-North
The DIRECT Project M31 stars visible with 1.2 meter FLWO telescope Modern Astrophysics, Carroll & Ostlie
DIRECT Project M33
DIRECT Project M31
The DIRECT Project Results in M31 Bonanos et al. 2003
The DIRECT Project From M31 field Y (Bonanos et al. 2003)
DIRECT Project Macri et al., 2001 candidate found
O-star binary P = 4.8938 days KPNO 2.1 m follow up data
Hubble Space Telescope U-band B-band
Spitzer- IRAC 3.6 m 4.5 m 5.8 m 8 m M33 Spitzer GTO team (Gerhz et al.)
Lightcurve V-band 278 points KPNO 2.1m 1999, 2001
Model EBOP program (Nelson & Davis 1972, Popper & Etzel 1981) Wilson-Devinney program (Wilson & Devinney 1971, Wilson 1979, 1990) Simultaneous fit of BV light curves & radial velocity curve 13 parameters: period P, time of primary eclipse T0, inclination i, eccentricity e, argument of periastron , semi-major axis a, systemic velocity , surface potentials 1, 2, mass ratio q = M2/M1, Teff2, light ratio in V and B
Lightcurve B-band 83 points KPNO 2.1m 1999, 2001
Radial velocity curve Keck ESI Gemini GMOS 2002: ESI broke 2003: Hurricane Jimena
Keck- ESI Spectrum Oct 11, 2004 5.25 hours
Keck/ESI HeI 4388 HeII 4200 H H
DEB Parameters Period, P 4.89380 ±0.00003 days Inclination, i 87.2 ±0.5 deg Eccentricity, e 0.18 ±0.02 Longitude of periastron, 252.4 ±1.0 deg Light ratio L2/L1 (V) 0.492 ± 0.005 Light ratio L2/L1 (B) 0.493 ± 0.005 Mass ratio, q 0.91 ± 0.07 Systemic velocity , -214 ± 7km s-1 Semi-amplitude, K1 242 ± 11 km s-1 Semi-amplitude, K2 266 ± 11 km s-1 Fractional radius, r1 0.254 ± 0.002 Fractional radius, r2 0.182 ± 0.002
DEB Physical Parameters Bonanos, Stanek, Kudritzki et al., in prep.
Modelatmospheres • Hydrodynamic non-LTE models: • FASTWIND • including stellar winds • spherical extension • metal line blanketing • Puls, Urbaneja et al. 2005, A&A Rolf Kudritzki
Spectral Fits model spectra for star 1 log g1 = 3.78, v1(rad) star 2 log g2 = 4.03, v2(rad) free parameter : T1 (F1/F2 T2) composite spectrum: Sp = R12 F1 Sp1(T1, g1, v1)+R22 F2 Sp2(T2, g2, v2) normalize by N = R12 F1 + R22 F2
HeI 4026 HeII 5412 HeII 4542 HeI 4471 HeII 4200 HeI 4922
H4 Star 2 Star 1 Hβ T1 =35,37,39kK
HeI 4922 Star 2 Star 1 HeI λ4922 T1 =35,37,39kK
HeII 5412 Star 2 Star 1 HeII λ5412 T1 =35,37,39kK
Distance B - V = -0.11 (B-V)0= -0.25 E(B-V)= 0.14 ± 0.03 A(V)= Rv E(B-V)
Distance 24.87 +/- 0.16 mag U B V=19.58 R I
Distance to DEB Distance Modulus 24.87 ± 0.16 mag m-M = 5 log (d/10pc)942 ± 73 kpc Error Budget extinction 4.4% radii 4% temperature 4% photometry 3% 8% distance to M33
M33 Distance HST Key Project
Implications M33 Distance Key Project, Cepheids 24.62 ± 0.15 mag Freedman et al. (2001) DIRECT Project, DEB 24.87 ± 0.16 mag Bonanos et al. (in prep) LMC: 18.75 ± 0.22 mag H0= 63 km s-1 Mpc-1 (12% decrease)
HST Key Project Freedman et al. 2001
Large Magellanic Cloud 43.2 ±1.8 kpc 47.0 ±2.2 kpc 50.2 ±1.2 kpc 47.5 ±1.8 kpc Fitzpatrick et al. (2003)