290 likes | 318 Views
Explore the steps of meiosis, source of genetic variation, and the role of chromosome alignment and crossing over. Learn how meiosis creates gametes and leads to haploid cells, essential for genetic diversity. Discover how errors in meiosis can affect chromosome numbers and genetic conditions.
E N D
1. Meiosis and chromosome number • Steps in meiosis • Source of genetic variation • Independent alignment of homologues b. recombination
Gametes have a single set of chromosomes • Gametes are haploid, with only one set of chromosomes • Somatic cells are diploid.
Haploid gametes (n = 23) Egg cell • The human life cycle • Meiosis creates gametes • Mitosis of the zygote produces adult bodies Sperm cell MEIOSIS FERTILIZATION Diploidzygote (2n = 46) Multicellulardiploid adults (2n = 46) Mitosis anddevelopment Figure 8.13
Meiosis reduces the chromosome number from diploid to haploid • Chromosomes are duplicated before meiosis • Then cell divides twice to form four daughter cells.
MEIOSIS I: Homologous chromosomes separate INTERPHASE PROPHASE I METAPHASE I ANAPHASE I Centrosomes(withcentriolepairs) Microtubules attached tokinetochore Metaphaseplate Sister chromatidsremain attached Sites of crossing over Spindle Nuclearenvelope Sisterchromatids Tetrad Centromere(with kinetochore) Homologouschromosomes separate Chromatin Figure 8.14, part 1
While paired, they cross over and exchange genetic information (DNA) • homologous pairs are then separated, and two daughter cells are produced • In meiosis I, homologous chromosomes are paired
MEIOSIS II: Sister chromatids separate TELOPHASE IAND CYTOKINESIS TELOPHASE IIAND CYTOKINESIS PROPHASE II METAPHASE II ANAPHASE II Cleavagefurrow Sister chromatidsseparate Haploiddaughter cellsforming Figure 8.14, part 2
sister chromatids of each chromosome separate • result is four haploid daughter cells • Meiosis II is essentially the same as mitosis
MITOSIS MEIOSIS Diploid Diploid 1 gamete precursor somatic cell 2n 2n duplication 2 2n 2n 3 2n 2n 4 2n 2n division diploid haploid 5 2n 2n 1n 1n 6 division 7 1n 1n 1n 1n
MITOSIS MEIOSIS PARENT CELL(before chromosome replication) Site ofcrossing over MEIOSIS I PROPHASE I Tetrad formedby synapsis of homologous chromosomes PROPHASE Chromosomereplication Chromosomereplication Duplicatedchromosome(two sister chromatids) 2n = 4 Chromosomes align at the metaphase plate Tetradsalign at themetaphase plate METAPHASE I METAPHASE ANAPHASE I TELOPHASE I ANAPHASETELOPHASE Sister chromatidsseparate duringanaphase Homologouschromosomesseparateduringanaphase I;sisterchromatids remain together Haploidn = 2 Daughtercells of meiosis I 2n 2n No further chromosomal replication; sister chromatids separate during anaphase II MEIOSIS II Daughter cellsof mitosis n n n n Daughter cells of meiosis II Figure 8.15
Homologous chromosomes carry different versions of genes at corresponding loci • Each chromosome of a homologous pair comes from a different parent • Each chromosome thus differs at many points from the other member of the pair
POSSIBILITY 1 POSSIBILITY 2 Two equally probable arrangements of chromosomes at metaphase I Metaphase II Gametes Combination 1 Combination 2 Combination 3 Combination 4 Figure 8.16
Crossing over further increases genetic variability • Crossing over is the exchange of corresponding segments between two homologous chromosomes • Genetic recombination results from crossing over during prophase I of meiosis
Tetrad Chaisma Centromere Figure 8.18A
MEIOSIS I PROPHASE I METAPHASE I ANAPHASE I END OF INTERPHASE
MEIOSIS METAPHASE II TELOPHASE I PROPHASE II ANAPHASE II TELOPHASE II
INDEPENDENT ASSORTMENT TELOPHASE II METAPHASE II METAPHASE I METAPHASE I
SPERMATOGENESIS b OOGENESIS a spermatogonium oogonium primary spermatocyte primary oocyte meiosis l secondary spermatocyte secondary oocyte polar body meiosis ll spermatids polar bodies (will be degraded) egg
Accidents during meiosis can alter chromosome number Nondisjunctionin meiosis I • Abnormal chromosome count is a result of nondisjunction • Either homologous pairs fail to separate during meiosis I Normalmeiosis II Gametes n + 1 n + 1 n – 1 n – 1 Number of chromosomes Figure 8.21A
Or sister chromatids fail to separate during meiosis II Normalmeiosis I Nondisjunctionin meiosis II Gametes n + 1 n – 1 n n Number of chromosomes Figure 8.21B
Fertilization after nondisjunction in the mother results in a zygote with an extra chromosome Eggcell n + 1 Zygote2n + 1 Spermcell n (normal) Figure 8.21C
Connection: An extra copy of chromosome 21 causes Down syndrome • This karyotype shows three number 21 chromosomes • An extra copy of chromosome 21 causes Down syndrome Figure 8.20A, B
The chance of having a Down syndrome child goes up with maternal age Figure 8.20C
Connection: Abnormal numbers of sex chromosomes do not usually affect survival • Nondisjunction can also produce gametes with extra or missing sex chromosomes • Unusual numbers of sex chromosomes upset the genetic balance less than an unusual number of autosomes