1 / 30

Soft motions of amorphous solids

Soft motions of amorphous solids. Matthieu Wyart. Amorphous solids. structural glasses, granular matter, colloids, dense emulsions TRANSPORT: thermal conductivity   few   molecular sizes  phonons strongly scattered FORCE PROPAGATION: L?. ln (T). L?.

lilian
Download Presentation

Soft motions of amorphous solids

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Soft motions of amorphous solids Matthieu Wyart

  2. Amorphous solids • structural glasses, granular matter, colloids, dense emulsions • TRANSPORT: • thermal conductivity • few  molecular sizes •  phonons strongly scattered • FORCE PROPAGATION: • L? ln (T) L? Behringer group

  3. Glass Transition Heuer et. al. 2001 • e • 

  4. Angle of Repose h Rearrangements Non-local Pouliquen, Forterre

  5. Rigidity ``cage ’’ effect: Rigidity toward collective motions more demanding Maxwell: not rigid Z=d+1: local characteristic length ?

  6. Continuous medium: phonon = plane wave  Density of states D(ω) N(ω) V-1 dω-1 Amorphous solids: - Glass: excess of low-frequency modes. Neutron scattering  ``Boson Peak” (1 THz~10 K0) Transport, … Disorder cannot be a generic explanation Nature of these modes? Vibrational modes in amorphous solids? D(ω) ∼ ω2 Debye D(ω)/ω2 ω

  7. Amorphous solid different from a continuous bodyeven at L  O’hern, Silbert, Liu, Nagel D(ω) ∼ ω0 • Particles with repulsive, finite range interactions at T=0 • Jamming transition at packing • fraction c≈ 0.63 : Jammed,  c P>0 Unjammed,  c P=0 Crystal:plane waves :: Jamming:??

  8. Jamming ∼ critical point:scaling properties Geometry: coordination zc=2d z-zc=z~ (c)1/2 • Excess of Modes: • same plateau is reached for • different  • Define D(ω*)=1/2 plateau • ω*~ z B1/2 Relation between geometry and excess of modes??

  9. , Thorpe, Alexander Rigidity and soft modes Not rigid  soft mode Rigid Soft modes: for all contacts <ij> RiRjnij=0 Maxwell: z rigid? # constraints: Nc # degrees of freedom: Nd  z=2Nc/N  2d >d+1 global jamming: marginally connected zc=2d “isostatic” (Moukarzel, Roux, Witten, Tkachenko,...)

  10. Isostatic: D(ω)~ ω0  lattice: independent lines  D(ω)~ ω0

  11. z>zc * * = 1/ z  ω*~ B1/2/L*~z B1/2

  12. Random Packing Wyart, Nagel and Witten, EPL 2005 • main difference: modes are not one dimensional • * ~ 1/ z • L < L*: continuous elastic description bad approximation

  13. Ellenbroeck et.al 2006 Consistent with L* ~ z-1

  14. Extended Maxwell criterion S. Alexander f X * dE ~ k/L*2 X2- f X2 stability  k/L*2 > f  z > (f/k)1/2~ e1/2 ~ (c)1/2 Wyart, Silbert, Nagel and Witten, PRE 2005

  15. Hard Spheres V(r)  cri0.5 c0.64 0.58 1 • contacts,contact forces fij Ferguson et al. 2004, Donev et al. 2004

  16. Effective Potential Brito and Wyart, EPL 2006 • discontinuous potential  expand E? • coarse-graining in time: < Ri> fij(<rij>)? h 1 d: Z=∫πi dhij e- phij/kT p=kT/<h> Isostatic: hij=rij-1 Z=∫πi dhij e- fijhij/kT fij=kT/<hij>

  17. fij=kT/<hij>  V( r)= - kT ln(r-1) if contact V( r)=0 else G = ij V( rij) rij=||<Ri>-<Rj>|| • weak (~ z) relative correction throughout the glass phase

  18. Linear Response and Stability • dynamical matrix dF= M d<R> •  Vibrational modes z> C(p/B)1/2~p-1/2 • Near and after a rapid • quench: just enough contacts • to be rigid  system stuck in • the marginally stable region 

  19. vitrification vitrification Ln(z) Rigid Equilibrium configuration Unstable Ln(p) 

  20. Activation  c Point defects? Collective mode?

  21. Activation  c Brito and Wyart, J. phys stat, 2007

  22. Granular matter • : • Counting changes zc = d+1 • not critical z(p0)≠ zc d+1< z <2d • z depends on and preparation • Somfai et al., PRE 2007 • Agnolin et Roux, PRE 2008

  23. starth) Hypothesis: (i) z > z_c (ii) Saturated contacts: zc.c.= f(/p)= f(tan ((staron) (iii) Avalanche starts as z≈ zc.c(start) Consistent with numerics (2d,: (somfai, staron) z≈0.2 zc.c(start) ≈ 0.16  h

  24. Rigidity criterion with a fixed and free boundary wyart, arXiv 0807.5109 Fixed boundary : z -> z +a/h Free boundary : z -> z +a'/h a'<a Finite h: z -> z +(a-a')/h z +(a-a')/h = f(tan  h c0/ [ c1 tan z] : effect > *2

  25. Acknowledgement Tom Witten Sid Nagel Leo Silbert Carolina Brito

  26. Isostatic: D(ω)~ ω0 Wyart, Nagel and Witten, EPL 2005 • ``just” rigid: remove m contacts…generate m • SOFT MODES: •  High sensitivity to boundary conditions L Xi L • generate p~Ld-1soft modes independent (instead of 1 for a normal solid) • argument: show that these modes gain a frequency ω~L-1 • when boundary conditions are restored. Then: D(ω) ~Ld-1/(LdL-1) ~L0

  27. Soft modes: extended, • heterogeneous • Not soft in the original system, cf • stretch or compress contacts cut to • create them • Introduce Trial modes • Frequency  harmonic modulation of a translation, • i.e plane waves ωL-1 •  D(ω)~ ω0 (variational) Anomalous Modes R*isin(xi π/L) Ri x L 

  28. A geometrical property of random close packing z > (c)1/2 maximum density  stable to the compression c relation density landscape // pair distribution function g(r) 1+(c)/d z ~ g(r) dr stable  g(r) ~(r-1)-1/2 1 Silbert et al., 2005

  29. Glass Transition • =G relaxation time  Heuer et. al. 2001 • e

  30. Vitrification as a ``buckling" phenomenum  increases P increases L

More Related