310 likes | 464 Views
Soft motions of amorphous solids. Matthieu Wyart. Amorphous solids. structural glasses, granular matter, colloids, dense emulsions TRANSPORT: thermal conductivity few molecular sizes phonons strongly scattered FORCE PROPAGATION: L?. ln (T). L?.
E N D
Soft motions of amorphous solids Matthieu Wyart
Amorphous solids • structural glasses, granular matter, colloids, dense emulsions • TRANSPORT: • thermal conductivity • few molecular sizes • phonons strongly scattered • FORCE PROPAGATION: • L? ln (T) L? Behringer group
Glass Transition Heuer et. al. 2001 • e •
Angle of Repose h Rearrangements Non-local Pouliquen, Forterre
Rigidity ``cage ’’ effect: Rigidity toward collective motions more demanding Maxwell: not rigid Z=d+1: local characteristic length ?
Continuous medium: phonon = plane wave Density of states D(ω) N(ω) V-1 dω-1 Amorphous solids: - Glass: excess of low-frequency modes. Neutron scattering ``Boson Peak” (1 THz~10 K0) Transport, … Disorder cannot be a generic explanation Nature of these modes? Vibrational modes in amorphous solids? D(ω) ∼ ω2 Debye D(ω)/ω2 ω
Amorphous solid different from a continuous bodyeven at L O’hern, Silbert, Liu, Nagel D(ω) ∼ ω0 • Particles with repulsive, finite range interactions at T=0 • Jamming transition at packing • fraction c≈ 0.63 : Jammed, c P>0 Unjammed, c P=0 Crystal:plane waves :: Jamming:??
Jamming ∼ critical point:scaling properties Geometry: coordination zc=2d z-zc=z~ (c)1/2 • Excess of Modes: • same plateau is reached for • different • Define D(ω*)=1/2 plateau • ω*~ z B1/2 Relation between geometry and excess of modes??
, Thorpe, Alexander Rigidity and soft modes Not rigid soft mode Rigid Soft modes: for all contacts <ij> RiRjnij=0 Maxwell: z rigid? # constraints: Nc # degrees of freedom: Nd z=2Nc/N 2d >d+1 global jamming: marginally connected zc=2d “isostatic” (Moukarzel, Roux, Witten, Tkachenko,...)
Isostatic: D(ω)~ ω0 lattice: independent lines D(ω)~ ω0
z>zc * * = 1/ z ω*~ B1/2/L*~z B1/2
Random Packing Wyart, Nagel and Witten, EPL 2005 • main difference: modes are not one dimensional • * ~ 1/ z • L < L*: continuous elastic description bad approximation
Ellenbroeck et.al 2006 Consistent with L* ~ z-1
Extended Maxwell criterion S. Alexander f X * dE ~ k/L*2 X2- f X2 stability k/L*2 > f z > (f/k)1/2~ e1/2 ~ (c)1/2 Wyart, Silbert, Nagel and Witten, PRE 2005
Hard Spheres V(r) cri0.5 c0.64 0.58 1 • contacts,contact forces fij Ferguson et al. 2004, Donev et al. 2004
Effective Potential Brito and Wyart, EPL 2006 • discontinuous potential expand E? • coarse-graining in time: < Ri> fij(<rij>)? h 1 d: Z=∫πi dhij e- phij/kT p=kT/<h> Isostatic: hij=rij-1 Z=∫πi dhij e- fijhij/kT fij=kT/<hij>
fij=kT/<hij> V( r)= - kT ln(r-1) if contact V( r)=0 else G = ij V( rij) rij=||<Ri>-<Rj>|| • weak (~ z) relative correction throughout the glass phase
Linear Response and Stability • dynamical matrix dF= M d<R> • Vibrational modes z> C(p/B)1/2~p-1/2 • Near and after a rapid • quench: just enough contacts • to be rigid system stuck in • the marginally stable region
vitrification vitrification Ln(z) Rigid Equilibrium configuration Unstable Ln(p)
Activation c Point defects? Collective mode?
Activation c Brito and Wyart, J. phys stat, 2007
Granular matter • : • Counting changes zc = d+1 • not critical z(p0)≠ zc d+1< z <2d • z depends on and preparation • Somfai et al., PRE 2007 • Agnolin et Roux, PRE 2008
starth) Hypothesis: (i) z > z_c (ii) Saturated contacts: zc.c.= f(/p)= f(tan ((staron) (iii) Avalanche starts as z≈ zc.c(start) Consistent with numerics (2d,: (somfai, staron) z≈0.2 zc.c(start) ≈ 0.16 h
Rigidity criterion with a fixed and free boundary wyart, arXiv 0807.5109 Fixed boundary : z -> z +a/h Free boundary : z -> z +a'/h a'<a Finite h: z -> z +(a-a')/h z +(a-a')/h = f(tan h c0/ [ c1 tan z] : effect > *2
Acknowledgement Tom Witten Sid Nagel Leo Silbert Carolina Brito
Isostatic: D(ω)~ ω0 Wyart, Nagel and Witten, EPL 2005 • ``just” rigid: remove m contacts…generate m • SOFT MODES: • High sensitivity to boundary conditions L Xi L • generate p~Ld-1soft modes independent (instead of 1 for a normal solid) • argument: show that these modes gain a frequency ω~L-1 • when boundary conditions are restored. Then: D(ω) ~Ld-1/(LdL-1) ~L0
Soft modes: extended, • heterogeneous • Not soft in the original system, cf • stretch or compress contacts cut to • create them • Introduce Trial modes • Frequency harmonic modulation of a translation, • i.e plane waves ωL-1 • D(ω)~ ω0 (variational) Anomalous Modes R*isin(xi π/L) Ri x L
A geometrical property of random close packing z > (c)1/2 maximum density stable to the compression c relation density landscape // pair distribution function g(r) 1+(c)/d z ~ g(r) dr stable g(r) ~(r-1)-1/2 1 Silbert et al., 2005
Glass Transition • =G relaxation time Heuer et. al. 2001 • e
Vitrification as a ``buckling" phenomenum increases P increases L