1 / 6

Calculus!!!

3.2 Rolle’s Theorem and the Mean Value Theorem. Calculus!!!. We. Rolle’s Theorem. Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If f(a) = f(b) then there is at least one number c in (a, b) f’(c) = 0.

lindad
Download Presentation

Calculus!!!

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. 3.2 Rolle’s Theorem and the Mean Value Theorem Calculus!!! We

  2. Rolle’s Theorem Let f be continuous on the closed interval [a, b] and differentiable on the open interval (a, b). If f(a) = f(b) then there is at least one number c in (a, b) f’(c) = 0. f’(c) means slope of tangent line = 0. Where are the horiz. tangent lines located? f(a) = f(b) c c a b

  3. Ex. Find the two x-intercepts of f(x) = x2 – 3x + 2 and show that f’(x) = 0 at some point between the two intercepts. f(x) = x2 – 3x + 2 0 = (x – 2)(x – 1) x-int. are 1 and 2 f’(x) = 2x - 3 0 = 2x - 3 x = 3/2 Rolles Theorem is satisfied as there is a point at x = 3/2 where f’(x) = 0.

  4. Let f(x) = x4 – 2x2 . Find all c in the interval (-2, 2) such that f’(x) = 0. Since f(-2) and f(2) = 8, we can use Rolle’s Theorem. f’(x) = 4x3 – 4x = 0 8 4x(x2 – 1) = 0 x = -1, 0, and 1 Thus, in the interval (-2, 2), the derivative is zero at each of these three x-values.

  5. The Mean Value Theorem If f is continuous on the closed interval [a,b] and differentiable on the open interval (a,b), then a number c in (a,b) (b,f(b)) secant line represents slope of the secant line. (a,f(a)) c a b

  6. Given f(x) = 5 – 4/x, find all c in the interval (1,4) such that the slope of the secant line = the slope of the tangent line. ? But in the interval of (1,4), only 2 works, so c = 2.

More Related