80 likes | 211 Views
Rollerslam – Actions and Percepts. Antonio Jose de Vasconcelos Costa - ajvc Breno Batista Machado - bbm Cleyton Mario de Oliveira Rodrigues - cmor Marcos Aurelio Almeida da Silva - maas Pablo Santana Barbosa - psb Weslei Alvim de Tarso Marinho - watm. Class Diagram - Agents.
E N D
Rollerslam – Actions and Percepts Antonio Jose de Vasconcelos Costa - ajvc Breno Batista Machado - bbm Cleyton Mario de Oliveira Rodrigues - cmor Marcos Aurelio Almeida da Silva - maas Pablo Santana Barbosa - psb Weslei Alvim de Tarso Marinho - watm
Class Diagram - Agents <<Agent>> Agent <<GoalAgent>> Player <<AutomataAgent>> Environment <<AutomataAgent>> Referee
<<Interface>> IGetActions + receiveActionRelease (p : Player) + receiveActionCatch (p : Player) + receiveActionThrow (acceleration : Vector, p : Player) + receiveActionTackle (p : Player) + receiveActionHitArm (p : Player) + receiveActionHitLegs (p : Player) + receiveActionDash (acceleration : Vector, p : Player) + receiveActionKick (acceleration : Vector, p : Player) + receiveActionSendMessage (subject : Fact, p : Agent) <<Interface>> IBody +feel(hasball: Boolean, position: Vector, velocity: Vector, acceleration: Vector) <<Interface>> IEyes +see (env : EnvironmentModel) <<Interface>> IEar +recvMessage (subject : Fact) Interfaces
Class Diagram – Agents Effectors <<Effector>> SendPercepts <<Action>> + sendPerceptSee (env : EnvironmentModel) <<Action>> + sendPerceptRecvMessage (subject : Fact) <<Action>> + sendPerceptFeel (hasball: Boolean, position: Vector, velocity: Vector, acceleration: Vector) <<Agent>> Agent <<Effector>> Mouth <<Action>> +sendMessage (subject : Fact) O antitackle será automático, isto é, sempre que um player receber um tackle, o ambiente irá analisar se o tackle será bem sucedido ou não, de acordo com os players. 1 - effector <<Interface>> IArms <<GoalAgent>> Player <<AutomataAgent>> Referee <<AutomataAgent>> Environment 1 1 1 - arm - leg <<Effector>> Legs <<Action>> +dash (acceleration : Vector) <<Action>> +kick (acceleration : Vector) +<<Action>> hit () 1 - mouth 1 - mouth 1 1 <<Effector>> Arms <<Action>> +release () <<Action>> +catch () <<Action>> +throw (acceleration : Vector) <<Action>> +tackle () <<Action>> +hit() <<Interface>> IArms <<Interface>> ILegs
<<Sensor>> GetActions <<Percept>> + receiveActionRelease (p : Player) <<Percept>> + receiveActionCatch (p : Player) <<Percept>> + receiveActionThrow (acceleration : Vector, p : Player) <<Percept>> + receiveActionTackle (p : Player) <<Percept>> + receiveActionHitArm (p : Player) <<Percept>> + receiveActionHitLegs (p : Player) <<Percept>> + receiveActionDash (acceleration : Vector, p : Player) <<Percept>> + receiveActionKick (acceleration : Vector, p : Player) <<Percept>> + receiveActionSendMessage (subject : Fact, p : Agent) <<Sensor>> Body <<Percept>> +feel(hasball: Boolean, position: Vector, velocity: Vector, acceleration: Vector) <<Sensor>> Eyes <<Percept>> +see (env : EnvironmentModel) <<Sensor>> Ear <<Percept>> +recvMessage (subject : Fact) Class Diagram – Agents Sensors <<Interface>> IGetActions <<Agent>> Agent 1 - sensor <<GoalAgent>> Player <<AutomataAgent>> Referee <<AutomataAgent>> Environment 1 1 1 - eyes - eyes - body 1 1 - ear 1 1
<<GoalAgent>> Player <<AutomataAgent>> Environment Class Diagram – Environment X Player IEar PErP PSErP <<Sensor>> Ear IEyes <<Sensor>> Eyes <<Effector>> SendPercepts PEsP PSEsP <<Sensor>> Body IBody PBdP PSBdP
<<GoalAgent>> Player <<AutomataAgent>> Environment Class Diagram – Player X Environment IGetActions PArA PGArA <<Effector>> Arms IGetActions <<Effector>> Mouth <<Sensor>> GetActions PMtA PGMtA IGetActions <<Effector>> Legs PLgA PGLgA
<<Sensor>> Eyes Class Diagram – Referee X Environment <<AutomataAgent>> Referee PEyesPercept ISendPercepts PMouthAction <<Effector>> Mouth IGetAction PGetMouthAction PSendEyesPercept <<AutomataAgent>> Environment <<Sensor>> GetActions <<Effector>> SendPercepts