510 likes | 668 Views
Detection of SN Neutrino-Nucleus Elastic Scattering by Multi-ton Liquid Xe/Ar Detectors MAX and XAX. Katsushi Arisaka Michael (Chi Wai ) Lam. University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu. XAX (Xenon-Argon-Xenon). Water Tank Veto.
E N D
Detection of SN Neutrino-Nucleus Elastic Scattering by Multi-ton Liquid Xe/Ar Detectors MAX and XAX Katsushi Arisaka Michael (Chi Wai) Lam University of California, Los Angeles Department of Physics and Astronomy arisaka@physics.ucla.edu Katsushi Arisaka, UCLA
XAX (Xenon-Argon-Xenon) Water Tank Veto WIMP (Spin even) Double Beta Decay WIMP (Spin odd) Solar Neutrino WIMP (Spin even) 12 m 40Ar 70 ton (50 ton) 136Xe 7 ton (4 ton) 129/131Xe 12 ton (6 ton) 1.2 m 2 m 4 m 12 m 14 m Katsushi Arisaka, UCLA
Why Multiple Targets? • Systematic Study of Dark Matter Interaction • Target mass dependence of Cross section and Energy spectrum • Xenonvs. Argon • Spin dependence of Cross section • 129/131Xe (Spin odd) vs.132/134/136Xe (Spin even) • Precise determination of Mass and Cross section • Neutrino-less Double Beda Decay • > 1028 years by 136Xe • Solar Neutrino • 1% measurement of pp chain flux by 129/131Xe. Katsushi Arisaka, UCLA
Energy Spectrums (Natural Xe) 100 GeV WIMP (10-44 cm2) 2 DBD (1022 yrs) pp Solar Be7 Solar 0 DBD (1027 yrs) B8 Solar Katsushi Arisaka, UCLA
XAX XAX XAX
Concept of one of XAX Detectors Liquid Xe (19 ton) TPB + Resistive Coating (ATO) + Acrylic Vessel Radiation- free Photon Detector (3” QUPID, Total 3950) 2 m OFHC (Oxygen-Free High Conductivity Copper) Vacuum Vessel Katsushi Arisaka, UCLA
Equipotential lines and Electron Trajectories 0 V ITO (Indium Tin Oxide) Transparent Conductive Coating (~1 k⁄) -6 kV -13.5 kV ATO (Antimony Tin Oxide) Transparent Resistive Coating (~ 1 G⁄) Electron Trajectories ITO (Indium Tin Oxide) Transparent Conductive Coating (~1 k⁄) -200 kV -6kV 0 V Katsushi Arisaka, UCLA
Expected No. of Photoelectrons per keV(Abs. Length = 10 m, Scat. Length = 50 cm) Photon Detectors on Side Wall PTFE on Side Wall (Reflectivity = 98%) ~ 1.5 pe/keV ~ 3 pe/keV Katsushi Arisaka, UCLA
Gamma and Neutron Backgrounds( 1 mBq, 0.1 n/Year, 10 Years) • Gamma • Neutron 0.4 n /year 0.01 /year 10 ton XENON10 Katsushi Arisaka, UCLA
Beauty of XAX Concept • XAX is ideal as “the flag-ship experiment” at DUSEL. • It addresses several major science topics: WIMP, Double Beta Decay, Solar Neutrino, Supernova Neutrino • Largest detector with 5 keV threshold: > 10 ton • Cost is the right scale: ~ $100M • It combines all existing/proposed noble liquid experiments into a unified superior experiment. • Both Xenon and Argon. • Single-phase-like geometry with double-phase TPC. Katsushi Arisaka, UCLA
XAX paper by UCLA Group Katsushi Arisaka, UCLA
from MAX to XAX Katsushi Arisaka, UCLA
MAX - Multi-ton Argon & Xenon MAX Collaboration = XENON100 + DarkSide UMass Amherst, Arizona State University Augustana College, Black Hills State University Coimbra University, Columbia University Fermilab, University of Houston, INAF, LNGS MIT, University of Münster, University of Notre Dame Princeton University, Rice University, Temple University UCLA, Univesity of Virginia, Waseda University University of Zürich Katsushi Arisaka, UCLA
MAX Detector 40Ar 5 ton (2.5 ton) Xe 2.4 ton (1.2 ton) 2 m 1 m DUSEL S4 Study funded ($3.5M) Katsushi Arisaka, UCLA
MAX WIMP WIMP Double Beta Decay 40Ar 10 ton (5 ton) Xe 2.4 ton (1.2 ton) 1 m 2 m Katsushi Arisaka, UCLA
XAX Phase I WIMP WIMP Double Beta Decay Solar Neutrino 40Ar 70 ton (50 ton) Xe 20 ton (10 ton) 129/131Xe 2.4 ton (1.2 ton) 4 m 2 m Katsushi Arisaka, UCLA
XAX Phase II WIMP WIMP (Spin even) Double Beta Decay WIMP (Spin odd) Solar Neutrino 40Ar 70 ton (50 ton) 136Xe 7 ton (4 ton) 129/131Xe 12 ton (6 ton) 1.2 m 2 m 4 m Katsushi Arisaka, UCLA
Dark Matter Experiments XENON10 Theoretical Prediction XENON100 XENON100+ MAX XAX Katsushi Arisaka, UCLA
Double Beta Decay Experiments EXO200 EXO 1Ton CANDLES III No. of Backgrounds (/year) 1026 yrs 1025 yrs 1027 yrs 1028 yrs NEMO3 (Mo) CUORE I MAX CUORE III Cuoricino XAX Phase I Super-NEMO (Se) XAX Phase II GERDA III GERDA I CUORE II EXO 1Ton (Ba tag) COBRA NEMO3 (Se) GERDA II Mass (kg) Katsushi Arisaka, UCLA
MAX an XAX Katsushi Arisaka, UCLA
MAX an XAX Katsushi Arisaka, UCLA
Supernova Neutrino Katsushi Arisaka, UCLA
Horowitz, Coakley, Mckinsey 2003 Katsushi Arisaka, UCLA
Neutrinos from a Supernova • Assumptions: • 10 kpc away. • Total energy radiated in neutrinos = 3*1053 ergs • Equal partition of energy among the 6 neutrinos • Temperatures of neutrinos: • kBT = 3.5 MeV • kBT = 5 MeV • kBT = 6~8 MeV Katsushi Arisaka, UCLA
Neutrino-Nucleus Elastic Scattering • Scattering cross section • K – Neutrino energy • θ – Scattering angle • Qw – Weak charge of nucleus • θw – Weak mixing angle • G – Fermi’s constant • F(Q2)– Elastic nuclear form factor • Q – momentum transfer Katsushi Arisaka, UCLA
Energy Spectrum of SN Nuclei Scattering Xenon Argon Neon Katsushi Arisaka, UCLA
Temperature Dependence of Energy Spectrum Xenon 10 MeV 8 MeV 6 MeV 4 MeV Katsushi Arisaka, UCLA
Temperature Dependence of Energy Spectrum Argon 39Ar Background (after S2/S1 cut) 10 MeV 4 MeV 6 MeV 8 MeV 39Ar Background (after S2/S1, 95% depleted) No pulse shape cut Pulse shape cut Katsushi Arisaka, UCLA
Expected Spectrum at MAX Xenon (9 events) Argon (12 events) Argon (Pulse Shape) (6 events) Katsushi Arisaka, UCLA
Expected Spectrum at XAX Xenon (90 events) Argon (118 events) Argon (Pulse Shape) (64 events) Katsushi Arisaka, UCLA
Estimate of Total Energy vs. Temperature Xenon (1 Ton) Argon (5 Ton) MAX 2σ 2σ 1σ 1σ Xenon (10 Ton) Argon (50 Ton) XAX
Estimate of Total Energy vs. Temperature 2σ 1σ E = 3 ±0.4 x 1047 J Argon (50 Ton) T = 8 ±0.7 MeV
Summary of Scaling Laws W: Weight L: Distance to the Supernova Katsushi Arisaka, UCLA
Summary • MAX and XAX are powerful, unique SN neutrino detectors via neutrino-nucleus elastic scattering. • Sensitive to the total neutrino energy of νx • MAX ± 30% • XAX ± 8% • Temperature of νx can be determined well. • MAX ± 20% • XAX ± 5% Katsushi Arisaka, UCLA
Current Experiment: XENON100 & QUPID Katsushi Arisaka, UCLA
WARP Katsushi Arisaka, UCLA
XENON100 Detector 170 kg (50 kg) Katsushi Arisaka, UCLA
Grad Students working on the Detector Katsushi Arisaka, UCLA
3” QUPID (Quartz Photon Intensifying Detector) Photo Cathode (-6 kV) Photo Cathode (-6 kV) Quartz Al coating APD (0 V) Quartz APD (0 V) Quartz Invented by K. Arisaka & H. Wang in 2007 (US patent pending) Katsushi Arisaka, UCLA
Comparison of Low-radioactivePhoton Detectors from Hamamatsu R8520 1 inch R8778 2 inch QUPID 3 inch XENON100+ MAX XAX XENON10 XENON100 XMASS LUX
Spectrum of QUPIDs and Background(4 QUPIDs x 1 month data) QUPIDs are invisible! (< 1 mBq) No QUPID 4 QUPIDs
1, 2 and 3 PE Distribution with 2m cable 3 PE 2 PE 1 PE Katsushi Arisaka, UCLA
XENO100 upgrade Funded by NSF (2009 – 2010) 1” R8520 from XENON100 (Total 251) Liquid Xenon 400 kg (200 kg) OFHC (Oxygen-Free High Conductivity Copper) Vacuum Vessel (1 cm thick x 2) 60 cm Radiation- free Photon Detector (3” QUPID, Total 37) Katsushi Arisaka, UCLA
Summary Katsushi Arisaka, UCLA
MAX Detector 40Ar 5 ton (2.5 ton) Xe 2.4 ton (1.2 ton) 2 m 1 m Katsushi Arisaka, UCLA
XAX Detector Water Tank Veto WIMP (Spin even) Double Beta Decay WIMP (Spin odd) Solar Neutrino WIMP (Spin even) 12 m 40Ar 70 ton (50 ton) 136Xe 7 ton (4 ton) 129/131Xe 12 ton (6 ton) 1.2 m 2 m 4 m 12 m 14 m Katsushi Arisaka, UCLA
MAX an XAX Katsushi Arisaka, UCLA
MAX an XAX Katsushi Arisaka, UCLA
Estimate of Total Energy vs. Temperature Xenon (1 Ton) Argon (5 Ton) MAX 2σ 2σ 1σ 1σ Xenon (10 Ton) Argon (50 Ton) XAX