220 likes | 382 Views
6C. 2 x 3C. -2 NAD. NAD. GAPDH. NADH + H +. ADP. +4 ATP. ATP. PEP. ADP. 2 x 3C. ATP. Pyruvate. -2 NAD. CoASH + NAD. -2 CoASH. PDHC. CO 2 + NADH + H +. 2x 2C. Acetyl- CoA. Glycolysis. Glucose. ATP. ADP. -2 ATP. ATP. ADP. T3P. Glycolysis simplified. Glucose. 2 NAD.
E N D
6C 2 x 3C -2 NAD NAD GAPDH NADH + H+ ADP +4 ATP ATP PEP ADP 2 x 3C ATP Pyruvate -2 NAD CoASH + NAD -2 CoASH PDHC CO2 + NADH + H+ 2x 2C Acetyl-CoA Glycolysis Glucose ATP ADP -2 ATP ATP ADP T3P
Glycolysis simplified Glucose 2 NAD 2 NADH + 2 H+ 2 ADP 2 ATP 2 Pyruvate 2 CoASH + 2 NAD 2 CO2 + 2 NADH + 2 H+ 2 Acetyl-CoA
NAD + 3 ATP 3 ATP + NAD FAD + 2 ATP 3 ATP + NAD TCA / Respiration + O2 2C Acetyl-CoA 4C CoASH OAA Citrate NADH + H+ 6C NAD Isocitrate Malate NAD Fumarate NADH + H+ CO2 FADH2 2-KG FAD Succinate CoASH + NAD Succinyl- CoA CoASH NADH + H+ ATP CO2 ADP 4C
2 Acetyl-CoA 2 CoASH 6 NADH + 6 H+ 2 FADH2 + 2 H+ 2 ATP TCA / Respiration simplified 18 ATP +6 NAD 4 ATP +2 FAD
simplified 2 Acetyl-CoA 2 ADP 2 ATP 2 Acetate 2 CoASH An alternative Acetate Fermentation 2 Acetyl-CoA Pi 2 CoASH 2 Acetyl~P 2 ADP 2 ATP 2 Acetate
versus Fermentation Glucose 2 NAD 2 NADH + 2 H+ 2 ADP 2 ATP 2 Pyruvate 2 CoASH + 2 NAD 2 CO2 + 2 NADH + 2 H+ 2 Acetyl-CoA 2 CoASH 2 ADP 2 ATP 2 Acetate < 4 ATP Respiration Glucose 2 NAD 6 ATP +2 NAD 2 NADH + 2 H+ 2 ADP 2 ATP 2 Pyruvate 2 CoASH + 2 NAD 6 ATP +2 NAD 2 CO2 + 2 NADH + 2 H+ 2 Acetyl-CoA 2 CoASH 18 ATP +6 NAD 6 NADH + 6 H+ 4 ATP +2 FAD 2 FADH2 + 2 H+ 2 ATP 38 ATP
2 NADH + 2 H+ 2 NAD 2 ATP 2 Lactate 2 CoASH + 2 NAD 2 CO2 + 2 NADH + 2 H+ 2 NADH + 2 H+ 2 NAD + 2 CoASH 2 ATP 2 NADH + 2H+ 2 NAD 2 Ethanol To recycle NAD sacrifice energy (ATP) Glucose 2 NAD 2 NADH + 2 H+ 2 ADP 2 ATP 2 Pyruvate 2 Acetyl-CoA 2 Pi 2 CoASH 4 ATP 2 ADP 2 ATP 2 Acetate
NADH + H+ NAD Lactate CoASH + NAD CO2 + NADH + H+ Acetyl-CoA Pi CoASH 3 ATP ADP ATP Acetate To recycle NAD sacrifice energy (ATP) Glucose 2 NAD 2 NADH + 2 H+ 2 ADP 2 ATP 2 Pyruvate
Glucuronic acid Glucose Glucitol oxidized reduced To generate ATP or to recycle NAD Redox state of the carbon source matters
NADH + H+ NADH + H+ NAD NAD Glucuronic acid Highly oxidized Glucitol Highly reduced Acetyl-CoA Pi NADH + H+ CoASH NAD + CoASH ADP NADH + H+ ATP NAD Ethanol Acetate To generate ATP or to recycle NAD Redox state of the carbon source matters
Getting Glucose In Phosphosugar Transferase System PTS Glucose CM EIIC P P EIIB EIIA HPr EI PEP P P Glucose-6-P EIIB EIIA HPr EI Pyr
pyruvate PTS CoASH + NAD PDHC CO2 + NADH + H+ Acetyl-CoA Glycolysis + PTS Glucose ATP ADP 2 T3P 2 NAD GAPDH 2 NADH + 2 H+ 2 ADP 2 ATP 2 PEP ADP ATP Pyruvate
Low glucose Sufficient oxygen High glucose Sufficient oxygen Glucose Glucose 2 NAD 2 NAD 6 ATP +2 NAD 2 NADH + 2 H+ 2 NADH + 2 H+ 2 ADP 2 ADP NADH + H+ NAD 2 ATP 2 ATP 2 Pyruvate 2 Pyruvate Lactate CoASH + NAD 2 CoASH + 2 NAD 6 ATP +2 NAD CO2 + NADH + H+ 2 CO2 + 2 NADH + 2 H+ Acetyl-CoA 2 Acetyl-CoA CoASH 2 CoASH ADP ATP 18 ATP +6 NAD 6 NADH + 6 H+ 4 ATP +2 FAD 2 FADH2 + 2 H+ Acetate 2 ATP 38 ATP Consequences of the PTS Aerobic fermentation Bacterial Crabtree Effect Overflow metabolism Mixed acid fermentation
Consequences of the PTS mechanism Glucose CM EIIC P P EIIB EIIA HPr EI PEP P P Glucose-6-P EIIB EIIA HPr EI Pyr 6 NADH + 6 H+ 2 FADH2 + 2 H+ 2 ATP
Lactose Inducer exclusion ATP cAMP CRP lac AC More consequences of the PTS Glucose CM EIIC P P EIIB EIIA HPr EI PEP P P Glucose-6-P EIIB EIIA HPr EI Pyr CM
PTA RR Cellular Processes ACK RR~P Signaling by Acetate Fermentation Acetyl-CoA Pi CoASH Acetyl~P ADP ATP Acetate
RcsB RcsB~P Signaling by Acetate Fermentation An example Acetyl-CoA Pi CoASH Acetyl~P Capsule ADP ATP Acetate Flagella Acetyl~P helps regulate the transition from free-swimming individual = planktonic to sessile community = biofilms
NtrC NtrC~P Liao glnAp2 Signaling by Acetate Fermentation Another example Acetyl-CoA Pi CoASH Acetyl~P ADP ATP Acetate Acetyl~P helps regulate the transition from free-swimming individual = planktonic to sessile community = biofilms
Pi AMP ACS CoASH CoASH Acetyl-AMP ADP PPi ACS ATP ATP Acetate Switch Glucose 2 NAD 2 NADH + 2 H+ 2 ADP 2 ATP Pyruvate CoASH + NAD CO2 + NADH + H+ Acetyl-CoA Acetyl~P Acetate ACS = acetyl-CoA synthetase
NADH TCA MDH NAD+ GAPDH glc NAD+ NADH NAD+ NADH CobB Ac ~ Acs PAT Inactive CobB = Sir2 Acs activity depends on NAD Acetyl-CoA AMP Acs CoASH Ac~AMP PPi Acs ATP Acetate Must regenerate NAD – How?
Regenerating NAD GAPDH glc Pyr Acetyl-CoA NAD+ NADH LDH Lactate
NADH TCA MDH crabtree NAD+ GAPDH glc T3P Acetyl-CoA AMP NAD+ NADH LDH Acs AMP Acs CoASH Lactate CoASH Ac~AMP Pta-AckA pathway Ac~AMP NAD+ NADH PPi CobB Ac ~ PPi Acs Acs Acs PAT ATP ATP Ace Inactive ADP ATP The Whole Shebang