1 / 35

Prospect of bb experiment in Korea

Prospect of bb experiment in Korea. Presented by H.J.Kim Yonsei Univ., 10/25/2003 KPS 2003 fall meeting Contents 1) Introduction of n 2) Theory and Experiments of 0 n , 2 n bb 3) EC+ b + and transition to excited state with

liuz
Download Presentation

Prospect of bb experiment in Korea

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Prospect of bb experiment in Korea Presented by H.J.Kim Yonsei Univ., 10/25/2003 KPS 2003 fall meeting Contents 1) Introduction of n 2) Theory and Experiments of 0n, 2nbb 3) EC+b+ and transition to excited state with HPGe and CsI crystal with coincidence (Zn, Sn study) 4) Metal Loaded Liquid Scintillator R&D for bb 5) 0n, 2nbb R&D with Crystals. 6) Prospect

  2. Age of n physics ! • What we knew : spin 1/2, no charge 3 type: ne, nm, nt (2.981+-0.08 n by Z line shape) • What we now know: n oscillations ->mass, mixing Solar, Atmospheric, Reactor, K2K, LSND(miniBooNe) • What we still don't know and need to know a) Magnetic moment (Reactor, n source) b) Absolute mass scale (tritium b, bb) c) Dirac or Majorana (n =? anti n) (bb) • Cosmological question Relic n, Ultra high energy n, Dark matter

  3. Neutrino mass limits

  4. n mass limits from high energy But it is difficult to reach ~eV sensitivity

  5. Double beta decay process (A,Z+1) (A,Z-1) (A,Z) (A,Z) (A,Z) -> (A,Z+2) + 2b +2n (A,Z) -> (A,Z-2) + 2b+ +2n EC+b+ ,2EC also is possible (A,Z+2) (A,Z-2) Excited state g b+-> g g (511 keV) Ground state

  6. Why bb decay is important?

  7. Weighted average of all positive results Isotope T1/22n(y) T1/22n(y)calc 48Ca 6 ´ 1018- 5 ´ 1020 (4.2 +2.1-1.0 ) ´ 1019 76Ge 7 ´ 1019- 6 ´ 1022 (1.42 +0.09- 0.07) ´ 1021 82Se (0.9 ± 0.1) ´ 1020 3 ´ 1018- 6 ´ 1021 96Zr 3 ´ 1017- 6 ´ 1020 (2.1+0.8-0.4) ´ 1019 100Mo (8.0 ± 0.7) ´ 1018 1 ´ 1017- 2 ´ 1022 100Mo(0+*) (6.8 ± 1.2) ´ 1020 5 ´ 1019- 2 ´ 1021 (3.3 +0.4-0.3) ´ 1019 116Cd 3 ´ 1018- 2 ´ 1021 128Te (2.5 ± 0.4) ´ 1024 9 ´ 1022- 3 ´ 1025 130Te (0.9 ± 0.15) ´ 1021 2 ´ 1019- 7 ´ 1020 150Nd (7.0 ± 1.7) ´ 1018 6 ´ 1016- 4 ´ 1020 238U (2.0 ± 0.6) ´ 1021 1.2 ´ 1019 2n-DBD Candidate and Experimental results

  8. 0nbb decay half lives uncertainty A VARIETY OF 0n-DBD CANDIDATE NUCLIDES HAS TO BE STUDIED

  9. Experiment Isotope T1/20n (y) <mn>* (eV) Range <mn> 6.0 48Ca > 1.8 ´ 1022 Ogawa I. et al., submitted 2002 76Ge > 1.9 ´ 1025 0.35 < 0.3 - 2.5 Klapdor-Kleingrothaus et al. 2001 > 1.57 ´ 1025 0.38 < 0.3 - 2.5 Aalseth et al 2002 > 5.5 ´ 1022 4.8 < 1.4 - 256 100Mo Ejiri et al. 2001 1.9 < 1.8 - 6.2 116Cd > 1.3 ´ 1023 Zdenko et al. 2002 128Tegeo > 7.7 ´ 1024 1.0 < 1.0 - 4.4 Bernatowicz et al. 1993 130Te > 2.1 ´ 1023 1.5 < 0.9 - 2.1 Mi DBD n 2002 136Xe > 7 ´ 1023 1.8 < 1.4 - 4.1 Belli et al. The Best 0n-DBD results with different nuclei

  10. 0 nbb evidence?

  11. * Staudt, Muto, Klapdor-Kleingrothaus Europh. Lett 13 (1990) 31 old/future bkg present bkg [c/keV kg y] Technology Mass [ton] Sensitivity (10y) HD-M partially tested HD-M partially tested IGEX mature GENIUS GEM MAJORANA 1 -10 1 nat. enr. 0.5 0.06 0.06 1500 300 150 2 - 6 1028 y 0.1 - 1 1028 y 0.4 1028 y 2.3 1028 y MI-DBD tested CUORE 0.8 nat 0.33 330 5 1027 y 1 1027 y 1 - 10 10nat 1.6enr Gotthard Xe challenging DAMA - Xe tested EXO XMASS 0.025 0.06 1000 10 0.9 - 13 1027 y 0.5 - 1 1027 y 2.2 1028 y ELEGANT standard MOON 34 nat ~ 0.02 300 1.3 1028 y 1 1027 y INR - Kiev needs confirm. CAMEO 0.1 - 1 0.03 600 4.9 1027 y 0.1 - 1 1027 y Future projects

  12. detector e- e- source e- e- detector SourceºDetector (calorimetric technique) Source¹Detector +event shape reconstruction -low energy resolution +high energy resolution -no event topology 1 10-6 Signature: shape of the two electron sum energy spectrum R = 5% 10-2 sum electron energy / Q Experimental search for DBD • Two approaches: • If you use the calorimetric approach

  13. bb material requirements • Matrix elements: good one (ex: Nd) ~mn1/2 • Enrichment: Gd, Te ~20%; Zr, Nd -> Difficult ~mn1/2 Mo, Se, Ge, Kr, Xe, (Cd, Sn) ->Easy • Efficiency : ~ 100% for active source technique~mn1/2 Mass, time ; ~mn1/4 • Resolution; 2n bb background issue ~mn1/4 • Background; Source impurity (U238,Th232) ~mn1/4Source purification, Time correlation (PSD) Active shielding to reduce backgrounds

  14. Why high-Z loaded scintillator for bb • Advantage a) Some high-Z can't be used for inorganic scintillator. (Sn) b) high-Z can be loaded to LS (>50% or more) c) Fast timing response (few ns) d) Low cost of LS, Large volume is possible e) U/Th/K background for LS is low and purification is known f) a/g separation can be possible • Disadvantage a) Bigger volume is necessary (C,H in LS, low density) b) Moderate light output (~15% of NaI(Tl))

  15. Background of homemadeLSC

  16. Tin loading study • Tin compound 1) 2-Ethyl hexanoate (144g/mole), Tin 15% w 50% loading (CH3(CH2)3CH(C2H5)CO2)2Sn ( FW405) => Quanching 2) Tetramethyl-tin (40%w50%) : flammable,expensive 3) Tetrabutyl-tin (19%w50%) 4) Dibutyltin diacetate, Dibutylphenyltin, tetrapropyltin, Tetraethyltin, Dimethyldiphenyltin • LS : Solvent+Solute * Solvent ; PC, 1,2-MN, o-,p-Xylene, Tolune, Benzene.. * Solute ; POP, BPO, PBD, Butyl-PBD, Naphthalene.. * Second-solute ; POPOP, M2-POPOP, bis-MSB... * PSD possible? -> Need a study * Others ; Nd2-ethylhexanoate, Zr4-ethylhexanoate. Ce2-ethylhexanoate, Sr2-ethylhexanoate, Pb2-ethylhex.

  17. Tin loading

  18. Tin loading (TBSN 50%->20%Sn)

  19. Double beta; HPGe with CsI crystal • HPGe a) EC+b+ , b+b+ ; No observation yet b) Excited transition to 2n, 0n;Mo, Nd (new) • HPGe + CsI (top side only) ; Under study (Zn,Sn, Zr) • HPGe + Full CsI cover ; Improve sensitivity 1 order? => Confirm Nd and try for Zr,Sn excited transition => at Y2L, Uses 12 6x6x30cm existing crystal and existing RbCs PMT • HPGe + Active detector (Sn-LSC, CaMoO4, ZnSe)

  20. Shielding g Background measurement 100% HPGe installed in CPL W/o shielding 10cm Pb + 10 cm Cu+ N2 (16 days data taking)

  21. Sn-124, Sn-122 0-,2-nbb limit * World best limit on Sn-124 (E.Norman PLB 195,1987) • Test of TBSN for a week at CPL , Preliminary results 450cm3 HPGe, 140 hours , 1.0liter TBSN : 400g of Sn • 2+ (603keV) 3.8x1018 year (4.0x1019 year) • 0+ (1156) 1.1x1019 year (2 -n theory : 2.7x1021) • 0+ (1326) 1.3x1019 year (2.2x1018 year) * Sn-122 EC+b+ decay ; 1.5x1018 year (6.1x1013)

  22. Zn EC+b+ decay EC+b+ limit ( b+ -> 2 g decay) 99.7% CL Positve evidence by I.BIKIT et.al, App. Radio. Isot. 46, 455, 1995 <= 25% HPGe + NaI(Tl) with 350g Zn at surface with shielding. -> Need to confirm or disprove!

  23. 511keV g 511keV g Zn EC+b+ decay HPGe + Zn(8x8x1cm)+CsI(Tl) crystal Our advantage: • 100% of HPGe • 350m underground • 10cm low background lead, • 10cm copper and N2 flowing Calibration by Na22 (b+ radioactive source) Efficiency calculation by Geant4; 3% Very Preliminary result with 1 week data; Coincidence cut with 2 sigma range ; 1 event • 2x1020 year by 95% CL • If I.BIKIT’s central value is taken, we would observe 100 events (1.1x1019 y) Sn (8x8x1cm) data is available and we can set 5 orders better limit CsI 7.5x7.5x8 Zn HPGe

  24. Energy dist at HPGe

  25. Crystals for bb • 300g CdWO4 bb search by Ukrine group; >0.7x1023 years Enrichment, PSD, actvie shielding -> successful • CaMoO4 (PbMoO4 , SrMoO4...) ; Mo, Ca bb search Similar with CdWO4 Light output; 20% at 20deg, increasing with lower temp, Decay time; weak 4ns and 16.6micro sec Wavelength; 450-650ns-> RbCs PMT or APD PSD?; -> Crystal growth issue; no commercial -> PSU -> Active (CsI) shielding inside of Y2L • GSO, ZnSe • CdZnTe ; R&D, 0.5x0.5x05cm(1g) <-100$ -> expensive • Liquid Xenon (not a crystal)

  26. Double beta decay

  27. CaMoO4 sensitivity • Ca,Mo purification, Active shield( 6cm CsI), Time correlation (PSD), 5% FWHM assumed. • 10kg Mo-100 enriched CaMoO4(100kg natural) Depleted Ca-48 or uses SrMoO4, PbMoO4 8x1024 years (0.2eV) <- explore Klopder’s claim region. (Current best limit: 5x1022 years by Ejiri group) • 10% Ca-48 enriched 10kg CaMoO4: 0 background, 1.5x1024 years (0.6eV) sensitivity (Current best limit : 2x1022 years) • 1ton Mo-100 enriched CaMoO4 with further factor 100 background rejection. 8x1026 years (0.02eV) sensitivity <- next generation goal.

  28. CaMoO4 R&D Pulse shape spectrum by Am-251 source CaMoO4 crystal *5x5x5mm * 부산대 결정성장연구소

  29. CaMoO4 and SrMoO4 S.B. Mikhrin et.al, NIMA 486 (2002) 295 1: SrMoO4 2: CaMoO4

  30. Red-sensitive high efficiency silicon sensor Large area Avalanche Photo diode (1.6cm diameter) 4x4 1.5cm2 Photo diode

  31. Summary • A R&D with HPGe, we already achieved world the best limit for 2-, 0-n Sn-124 excited level and Sn-122 transition. • With a pilot experiment with HPGe + Zn + CsI crystal, we ruled out Zn-64 EC+b+ positive evidence claimed by I.BIKIT et al. and set the limit to 2x1020 years by 95%CL . • Tin loaded LSC can be used for the double beta decay experiment. (up to 36% Sn loading successful) • Crystal R&D of CaMoO4, ZnSe, GSO started for bb search with active detector technique.

  32. Prospect • New 700m underground site at Yangyang : This will allow us to compete with world wide dark matter & bb experiment. • 1 liter enriched Sn loaded Liquid Scintillator: First Observation of 2n bb and T1/2 > 1022 years for 0n in Sn-124 • 10kg Mo-100 enriched CaMoO4 (SrMoO4, PbMoO4..) 8x1024 years (0.2eV) , 10% Ca-48 enriched 10kg CaMoO4: 1.5x1024 years (0.6eV) sensitivity • One ton Mo-100 enriched CaMoO4. 8x1026 years (0.02eV) sensitivity

  33. Tl-208 (Q=5MeV) background

  34. Mo-100 2n+0n with 5% FWHM

  35. bb candidates

More Related