320 likes | 571 Views
Introduction to Bioinformatics Biostatistics & Medical Informatics 576 Computer Sciences 576 Fall 2013. Sushmita Roy sroy@ biostat.wisc.edu www.biostat.wisc.edu/bmi576/. Sep 3 rd 2013. Goals for today. Administrivia Course Topics Short survey of interests/background.
E N D
Introduction to BioinformaticsBiostatistics & Medical Informatics 576Computer Sciences 576Fall 2013 Sushmita Roy sroy@biostat.wisc.edu www.biostat.wisc.edu/bmi576/ Sep 3rd 2013
Goals for today • Administrivia • Course Topics • Short survey of interests/background
BMI/CS 576: Intro to Bioinformatics • Course home page: www.biostat.wisc.edu/bmi576/ • Instructor: Sushmita Roy • sroy@biostat.wisc.edu • Office: room 6730, Medical Sciences Center • Office hours: • Tuesday: 11-12 • Thursday: 11-12 • Or by appointment • Other office in Wisconsin Institute for Discovery 3168
Course TA • Dongyoung Cho • chonie@cs.wisc.edu • Office room 1301 Computer Science • Office hours: • Wednesday 1:00-2:00 pm • Thursday 1:00-3:00 pm • Other days by appointment
Expected Background • CS 367 (Intro to Data Structures) or equivalent • Statistics: good if you’ve had at least one course, but not required • Molecular biology: no knowledge assumed, but an interest in learning some basic molecular biology is mandatory
Course grading • 4 or so homework assignments: ~40% • mostly programming • computational experiments • some written exercises • midterm exam: ~25% • final exam: ~30% • class participation (e.g. pop-up quiz, paper discussion): 5%
Computing Resources for the Class • UNIX workstations in Dept. of Biostatistics & Medical Informatics • accounts will be created later this week • two machines mi1.biostat.wisc.edu mi2.biostat.wisc.edu • Unix tutorial: http://pages.cs.wisc.edu/~deppeler/TUTORIALS/UNIX/
Class announcements and participation • Announcements on class mailing list • compsci576-1-f13 • Discussions via piazza • https://piazza.com/wisc/fall2013/csbmi576/home
Course readings • Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. R. Durbin, S. Eddy, A. Krogh, and G. Mitchison. Cambridge University Press, 1998. • Articles from the primary literature (scientific journals, etc.)
Goals for today • Administrivia • Course Overview • Short survey of interests/background
Learning goals of this class • Important computational problems in molecular biology • Understanding significant & interesting algorithms • Ability to apply the computational concepts to other related problems in biology
What is Bioinformatics/Computational biology? • ~30 years old • An interdisciplinary field of computational and biological scientists • Computer science, statistics, machine learning, physics • Genetics, microbiology, evolutionary biology, biochemistry • Early roots in Artificial Intelligence and machine learning • Development and application of informatics solutions to biological problems
Why computational biology? • Biology is a data-driven field • By far the richest types and sources of data • Biological systems are complex and noisy • Need informatics tools to • Store, manage, mine, visualize biological data • Model biological complexity • Generate testable hypotheses • Many biological questions translate naturally into a computational problem • Pattern extraction • Search • Inferring function/biological role of genes • Finding relationships among entities
Computational approaches to biological questions • How similar or different are two organisms at their DNA level? • Identifying genes associated with a disease • Predicting outcome under perturbations Biological question Computational approach • Aligning multiple sequences • Clustering/Network inference • Classification/Regression
Overview of lecture topics • Sequence alignment • Phylogenetic trees • Annotating genomes • Analyzing “omic” datasets • Inferring and analyzing biological networks • Network-based applications
Sequence comparison: How similar are the sequences? Human ADNP gene Mouse ADNP gene
Topics in sequence alignment • Pairwise alignment • Multiple sequence alignment • Practical algorithms for sequence alignment
How are these organisms related? Toh et al, Nature, 2011
Topics in phylogenetic trees • Reconstructing Phylogenetic trees • distance-based approaches • probabilistic methods • Inferring ancestral sequence • Parsimony • Probabilistic methods • Models of sequence evolution
CCACACCACACCCACACACCCACACACCACACCACACACCACACCACACCCACACACACACATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTTACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAACCACCATCCATCCCTCTACTTACTACCACTCACCCACCGTTACCCTCCAATTACCCATATCCAACCCACTGCCACTTACCCTACCATTACCCTACCATCCACCATGACCTACTCACCATACTGTTCTTCTACCCACCATATTGAAACGCTAACAAATGATCGTAAATAACACACACGTGCTTACCCTACCACTTTATACCACCACCACATGCCATACTCACCCTCACTTGTATACTGATTTTACGTACGCACACGGATGCTACAGTATATACCATCTCAAACTTACCCTACTCTCAGATTCCACTTCACTCCATGGCCCATCTCTCACTGAATCAGTACCAAATGCACTCACATCATTATGCACGGCACTTGCCTCAGCGGTCTATACCCTGTGCCATTTACCCATAACGCCCATCATTATCCACATTTTGATATCTATATCTCATTCGGCGGTCCCAAATATTGTATAACTGCCCTTAATACATACGTTATACCACTTTTGCACCATATACTTACCACTCCATTTATATACACTTATGTCAATATTACAGAAAAATCCCCACAAAAATCACCTAAACATAAAAATATTCTACTTTTCAACAATAATACATAAACATATTGGCTTGTGGTAGCAACACTATCATGGTATCACTAACGTAAAAGTTCCTCAATATTGCAATTTGCTTGAACGGATGCTATTTCAGAATATTTCGTACTTACACAGGCCATACATTAGAATAATATGTCACATCACTGTCGTAACACTCTTTATTCACCGAGCAATAATACGGTAGTGGCTCAAACTCATGCGGGTGCTATGATACAATTATATCTTATTTCCATTCCCATATGCTAACCGCAATATCCTAAAAGCATAACTGATGCATCTTTAATCTTGTATGTGACACTACTCATACGAAGGGACTATATCTAGTCAAGACGATACTGTGATAGGTACGTTATTTAATAGGATCTATAACGAAATGTCAAATAATTTTACGGTAATATAACTTATCAGCGGCGTATACTAAAACGGACGTTACGATATTGTCTCACTTCATCTTACCACCCTCTATCTTATTGCTGATAGAACACTAACCCCTCAGCTTTATTTCTAGTTACAGTTACACAAAAAACTATGCCAACCCAGAAATCTTGATATTTTACGTGTCAAAAAATGAGGGTCTCTAAATGAGAGTTTGGTACCATGACTTGTAACTCGCACTGCCCTGATCTGCAATCTTGTTCTTAGAAGTGACGCATATTCTATACGGCCCGACGCGACGCGCCAAAAAATGAAAAACGAAGCAGCGACTCATTTTTATTTAAGGACAAAGGTTGCGAAGCCGCACATTTCCAATTTCATTGTTGTTTATTGGACATACACTGTTAGCTTTATTACCGTCCACGTTTTTTCTACAATAGTGTAGAAGTTTCTTTCTTATGTTCATCGTATTCATAAAATGCTTCACGAACACCGTCATTGATCAAATAGGTCTATAATATTAATATACATTTATATAATCTACGGTATTTATATCATCAAAAAAAAGTAGTTTTTTTATTTTATTTTGTTCGTTAATTTTCAATTTCTATGGAAACCCGTTCGTAAAATTGGCGTTTGTCTCTAGTTTGCGATAGTGTAGATACCGTCCTTGGATAGAGCACTGGAGATGGCTGGCTTTAATCTGCTGGAGTACCATGGAACACCGGTGATCATTCTGGTCACTTGGTCTGGAGCAATACCGGTCAACATGGTGGTGAAGTCACCGTAGTTGAAAACGGCTTCAGCAACTTCGACTGGGTAGGTTTCAGTTGGGTGGGCGGCTTGGAACATGTAGTATTGGGCTAAGTGAGCTCTGATATCAGAGACGTAGACACCCAATTCCACCAAGTTGACTCTTTCGTCAGATTGAGCTAGAGTGGTGGTTGCAGAAGCAGTAGCAGCGATGGCAGCGACACCAGCGGCGATTGAAGTTAATTTGACCATTGTATTTGTTTTGTTTGTTAGTGCTGATATAAGCTTAACAGGAAAGGAAAGAATAAAGACATATTCTCAAAGGCATATAGTTGAAGCAGCTCTATTTATACCCATTCCCTCATGGGTTGTTGCTATTTAAACGATCGCTGACTGGCACCAGTTCCTCATCAAATATTCTCTATATCTCATCTTTCACACAATCTCATTATCTCTATGGAGATGCTCTTGTTTCTGAACGAATCATAAATCTTTCATAGGTTTCGTATGTGGAGTACTGTTTTATGGCGCTTATGTGTATTCGTATGCGCAGAATGTGGGAATGCCAATTATAGGGGTGCCGAGGTGCCTTATAAAACCCTTTTCTGTGCCTGTGACATTTCCTTTTTCGGTCAAAAAGAATATCCGAATTTTAGATTTGGACCCTCGTACAGAAGCTTATTGTCTAAGCCTGAATTCAGTCTGCTTTAAACGGCTTCCGCGGAGGAAATATTTCCATCTCTTGAATTCGTACAACATTAAACGTGTGTTGGGAGTCGTATACTGTTAGGGTCTGTAAACTTGTGAACTCTCGGCAAATGCCTTGGTGCAATTACGTAATTTTAGCCGCTGAGAAGCGGATGGTAATGAGACAAGTTGATATCAAACAGATACATATTTAAAAGAGGGTACCGCTAATTTAGCAGGGCAGTATTATTGTAGTTTGATATGTACGGCTAACTGAACCTAAGTAGGGATATGAGAGTAAGAACGTTCGGCTACTCTTCTTTCTAAGTGGGATTTTTCTTAATCCTTGGATTCTTAAAAGGTTATTAAAGTTCCGCACAAAGAACGCTTGGAAATCGCATTCATCAAAGAACAACTCTTCGTTTTCCAAACAATCTTCCCGAAAAAGTAGCCGTTCATTTCCCTTCCGATTTCATTCCTAGACTGCCAAATTTTTCTTGCTCATTTATAATGATTGATAAGAATTGTATTTGTGTCCCATTCTCGTAGATAAAATTCTTGGATGTTAAAAAATTAAAGGGACTATATCTAGTCAAGACGATACTGTCAGTAGCAGCGATGGCAGCGTGGCTTGTGGTAGCAACACTATCATGGTATCACTAACGTAAAAGTTCCTCAATATTGCAATTTGCTTGAACGGATGCTATTTCAGAATATTTCGTACTTACACAGGCCATACATTAGAATAATATGTCACATCACTGTCGTAACACTCTTTATTCACCGAGCAATAATACGGTAGTGGCTCAAACTCATGCGGGTGCTATGATACAATTATATCTTATTTCCATTCCCATATGCTAACCGCAATATCCTAAAAGCATAACTGATGCATCTTTAATCTTGTATGTGACACTACTCATACGAAGGGACTATATCTAGTCAAGACGATACTGTGATAGGTACGTTATTTAATAGGATCTATAACGAAATGTCAAATAATTTTACGGTAATATAACTTATCAGCGGCGTATACTAAAACGGACGTTACGATATTGTCTCACTTCATCTTACCACCCTCTATCTTATTGCTGATAGAACACTAACCCCTCAGCTTTATTTCTAGTTACAGTTACACAAAAAACTATGCCAACCCAGAAATCTTGATATTTTACGTGTCAAAAAATGAGGGTCTCTAAATGAGAGTTTGGTACCATGACTTGTAACTCGCACTGCCCTGATCTGCAATCTTGTTCTTAGAAGTGACGCATATTCTATACGGCCCGACGCGACGCGCCAAAAAATGAAAAACGAAGCAGCGACTCATTTTTATTTAAGGACAAAGGTTGCGAAGCCGCACATTTCCAATTTCATTGTTGTTTATTGGACATACACTGTTAGCTTTATTACCGTCCACGTTTTTTCTAGCACCATATACTTACCACTCCATTTATGAATCAGTACCAAATGCACCACACCACACCCACACACCCACACACCACACCACACACCACACCACACCCACACACACACATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTTACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAACCACCATCCATCCCTCTACTTACTACCACTCACCCACCGTTACCCTCCAATTACCCATATCCAACCCACTGCCACTTACCCTACCATTACCCTACCATCCACCATGACCTACTCACCATACTGTTCTTCTACCCACCATATTGAAACGCTAACAAATGATCGTAAATAACACACACGTGCTTACCCTACCACTTTATACCACCACCACATGCCATACTCACCCTCACTTGTATACTGATTTTACGTACGCACACGGATGCTACAGTATATACCATCTCAAACTTACCCTACTCTCAGATTCCACTTCACTCCATGGCCCATCTCTCACTGAATCAGTACCAAATGCACTCACATCATTATGCACGGCACTTGCCTCAGCGGTCTATACCCTGTGCCATTTACCCATAACGCCCATCATTATCCACATTTTGATATCTATATCTCATTCGGCGGTCCCAAATATTGTATAACTGCCCTTAATACATACGTTATACCACTTTTGCACCATATACTTACCACTCCATTTATATACACTTATGTCAATATTACAGAAAAATCCCCACAAAAATCACCTAAACATAAAAATATTCTACTTTTCAACAATAATACATAAACATATTGGCTTGTGGTAGCAACACTATCATGGTATCACTAACGTAAAAGTTCCTCAATATTGCAATTTGCTTGAACGGATGCTATTTCAGAATATTTCGTACTTACACAGGCCATACATTAGAATAATATGTCACATCACTGTCGTAACACTCTTTATTCACCGAGCAATAATACGGTAGTGGCTCAAACTCATGCGGGTGCTATGATACAATTATATCTTATTTCCATTCCCATATGCTAACCGCAATATCCTAAAAGCATAACTGATGCATCTTTAATCTTGTATGTGACACTACTCATACGAAGGGACTATATCTAGTCAAGACGATACTGTGATAGGTACGTTATTTAATAGGATCTATAACGAAATGTCAAATAATTTTACGGTAATATAACTTATCAGCGGCGTATACTAAAACGGACGTTACGATATTGTCTCACTTCATCTTACCACCCTCTATCTTATTGCTGATAGAACACTAACCCCTCAGCTTTATTTCTAGTTACAGTTACACAAAAAACTATGCCAACCCAGAAATCTTGATATTTTACGTGTCAAAAAATGAGGGTCTCTAAATGAGAGTTTGGTACCATGACTTGTAACTCGCACTGCCCTGATCTGCAATCTTGTTCTTAGAAGTGACGCATATTCTATACGGCCCGACGCGACGCGCCAAAAAATGAAAAACGAAGCAGCGACTCATTTTTATTTAAGGACAAAGGTTGCGAAGCCGCACATTTCCAATTTCATTGTTGTTTATTGGACATACACTGTTAGCTTTATTACCGTCCACGTTTTTTCTACAATAGTGTAGAAGTTTCTTTCTTATGTTCATCGTATTCATAAAATGCTTCACGAACACCGTCATTGATCAAATAGGTCTATAATATTAATATACATTTATATAATCTACGGTATTTATATCATCAAAAAAAAGTAGTTTTTTTATTTTATTTTGTTCGTTAATTTTCAATTTCTATGGAAACCCGTTCGTAAAATTGGCGTTTGTCTCTAGTTTGCGATAGTGTAGATACCGTCCTTGGATAGAGCACTGGAGATGGCTGGCTTTAATCTGCTGGAGTACCATGGAACACCGGTGATCATTCTGGTCACTTGGTCTGGAGCAATACCGGTCAACATGGTGGTGAAGTCACCGTAGTTGAAAACGGCTTCAGCAACTTCGACTGGGTAGGTTTCAGTTGGGTGGGCGGCTTGGAACATGTAGTATTGGGCTAAGTGAGCTCTGATATCAGAGACGTAGACACCCAATTCCACCAAGTTGACTCTTTCGTCAGATTGAGCTAGAGTGGTGGTTGCAGAAGCAGTAGCAGCGATGGCAGCGACACCAGCGGCGATTGAAGTTAATTTGACCATTGTATTTGTTTTGTTTGTTAGTGCTGATATAAGCTTAACAGGAAAGGAAAGAATAAAGACATATTCTCAAAGGCATATAGTTGAAGCAGCTCTATTTATACCCATTCCCTCATGGGTTGTTGCTATTTAAACGATCGCTGACTGGCACCAGTTCCTCATCAAATATTCTCTATATCTCATCTTTCACACAATCTCATTATCTCTATGGAGATGCTCTTGTTTCTGAACGAATCATAAATCTTTCATAGGTTTCGTATGTGGAGTACTGTTTTATGGCGCTTATGTGTATTCGTATGCGCAGAATGTGGGAATGCCAATTATAGGGGTGCCGAGGTGCCTTATAAAACCCTTTTCTGTGCCTGTGACATTTCCTTTTTCGGTCAAAAAGAATATCCGAATTTTAGATTTGGACCCTCGTACAGAAGCTTATTGTCTAAGCCTGAATTCAGTCTGCTTTAAACGGCTTCCGCGGAGGAAATATTTCCATCTCTTGAATTCGTACAACATTAAACGTGTGTTGGGAGTCGTATACTGTTAGGGTCTGTAAACTTGTGAACTCTCGGCAAATGCCTTGGTGCAATTACGTAATTTTAGCCGCTGAGAAGCGGATGGTAATGAGACAAGTTGATATCAAACAGATACATATTTAAAAGAGGGTACCGCTAATTTAGCAGGGCAGTATTATTGTAGTTTGATATGTACGGCTAACTGAACCTAAGTAGGGATATGAGAGTAAGAACGTTCGGCTACTCTTCTTTCTAAGTGGGATTTTTCTTAATCCTTGGATTCTTAAAAGGTTATTAAAGTTCCGCACAAAGAACGCTTGGAAATCGCATTCATCAAAGAACAACTCTTCGTTTTCCAAACAATCTTCCCGAAAAAGTAGCCGTTCATTTCCCTTCCGATTTCATTCCTAGACTGCCAAATTTTTCTTGCTCATTTATAATGATTGATAAGAATTGTATTTGTGTCCCATTCTCGTAGATAAAATTCTTGGATGTTAAAAAATTAAAGGGACTATATCTAGTCAAGACGATACTGTCAGTAGCAGCGATGGCAGCGTGGCTTGTGGTAGCAACACTATCATGGTATCACTAACGTAAAAGTTCCTCAATATTGCAATTTGCTTGAACGGATGCTATTTCAGAATATTTCGTACTTACACAGGCCATACATTAGAATAATATGTCACATCACTGTCGTAACACTCTTTATTCACCGAGCAATAATACGGTAGTGGCTCAAACTCATGCGGGTGCTATGATACAATTATATCTTATTTCCATTCCCATATGCTAACCGCAATATCCTAAAAGCATAACTGATGCATCTTTAATCTTGTATGTGACACTACTCATACGAAGGGACTATATCTAGTCAAGACGATACTGTGATAGGTACGTTATTTAATAGGATCTATAACGAAATGTCAAATAATTTTACGGTAATATAACTTATCAGCGGCGTATACTAAAACGGACGTTACGATATTGTCTCACTTCATCTTACCACCCTCTATCTTATTGCTGATAGAACACTAACCCCTCAGCTTTATTTCTAGTTACAGTTACACAAAAAACTATGCCAACCCAGAAATCTTGATATTTTACGTGTCAAAAAATGAGGGTCTCTAAATGAGAGTTTGGTACCATGACTTGTAACTCGCACTGCCCTGATCTGCAATCTTGTTCTTAGAAGTGACGCATATTCTATACGGCCCGACGCGACGCGCCAAAAAATGAAAAACGAAGCAGCGACTCATTTTTATTTAAGGACAAAGGTTGCGAAGCCGCACATTTCCAATTTCATTGTTGTTTATTGGACATACACTGTTAGCTTTATTACCGTCCACGTTTTTTCTAGCACCATATACTTACCACTCCATTTATGAATCAGTACCAAATGCA Where are the genes in this genome?
CCACACCACACCCACACACCCACACACCACACCACACACCACACCACACCCACACACACACATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTTACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAACCACCATCCATCCCTCTACTTACTACCACTCACCCACCGTTACCCTCCAATTACCCATATCCAACCCACTGCCACTTACCCTACCATTACCCTACCATCCACCATGACCTACTCACCATACTGTTCTTCTACCCACCATATTGAAACGCTAACAAATGATCGTAAATAACACACACGTGCTTACCCTACCACTTTATACCACCACCACATGCCATACTCACCCTCACTTGTATACTGATTTTACGTACGCACACGGATGCTACAGTATATACCATCTCAAACTTACCCTACTCTCAGATTCCACTTCACTCCATGGCCCATCTCTCACTGAATCAGTACCAAATGCACTCACATCATTATGCACGGCACTTGCCTCAGCGGTCTATACCCTGTGCCATTTACCCATAACGCCCATCATTATCCACATTTTGATATCTATATCTCATTCGGCGGTCCCAAATATTGTATAACTGCCCTTAATACATACGTTATACCACTTTTGCACCATATACTTACCACTCCATTTATATACACTTATGTCAATATTACAGAAAAATCCCCACAAAAATCACCTAAACATAAAAATATTCTACTTTTCAACAATAATACATAAACATATTGGCTTGTGGTAGCAACACTATCATGGTATCACTAACGTAAAAGTTCCTCAATATTGCAATTTGCTTGAACGGATGCTATTTCAGAATATTTCGTACTTACACAGGCCATACATTAGAATAATATGTCACATCACTGTCGTAACACTCTTTATTCACCGAGCAATAATACGGTAGTGGCTCAAACTCATGCGGGTGCTATGATACAATTATATCTTATTTCCATTCCCATATGCTAACCGCAATATCCTAAAAGCATAACTGATGCATCTTTAATCTTGTATGTGACACTACTCATACGAAGGGACTATATCTAGTCAAGACGATACTGTGATAGGTACGTTATTTAATAGGATCTATAACGAAATGTCAAATAATTTTACGGTAATATAACTTATCAGCGGCGTATACTAAAACGGACGTTACGATATTGTCTCACTTCATCTTACCACCCTCTATCTTATTGCTGATAGAACACTAACCCCTCAGCTTTATTTCTAGTTACAGTTACACAAAAAACTATGCCAACCCAGAAATCTTGATATTTTACGTGTCAAAAAATGAGGGTCTCTAAATGAGAGTTTGGTACCATGACTTGTAACTCGCACTGCCCTGATCTGCAATCTTGTTCTTAGAAGTGACGCATATTCTATACGGCCCGACGCGACGCGCCAAAAAATGAAAAACGAAGCAGCGACTCATTTTTATTTAAGGACAAAGGTTGCGAAGCCGCACATTTCCAATTTCATTGTTGTTTATTGGACATACACTGTTAGCTTTATTACCGTCCACGTTTTTTCTACAATAGTGTAGAAGTTTCTTTCTTATGTTCATCGTATTCATAAAATGCTTCACGAACACCGTCATTGATCAAATAGGTCTATAATATTAATATACATTTATATAATCTACGGTATTTATATCATCAAAAAAAAGTAGTTTTTTTATTTTATTTTGTTCGTTAATTTTCAATTTCTATGGAAACCCGTTCGTAAAATTGGCGTTTGTCTCTAGTTTGCGATAGTGTAGATACCGTCCTTGGATAGAGCACTGGAGATGGCTGGCTTTAATCTGCTGGAGTACCATGGAACACCGGTGATCATTCTGGTCACTTGGTCTGGAGCAATACCGGTCAACATGGTGGTGAAGTCACCGTAGTTGAAAACGGCTTCAGCAACTTCGACTGGGTAGGTTTCAGTTGGGTGGGCGGCTTGGAACATGTAGTATTGGGCTAAGTGAGCTCTGATATCAGAGACGTAGACACCCAATTCCACCAAGTTGACTCTTTCGTCAGATTGAGCTAGAGTGGTGGTTGCAGAAGCAGTAGCAGCGATGGCAGCGACACCAGCGGCGATTGAAGTTAATTTGACCATTGTATTTGTTTTGTTTGTTAGTGCTGATATAAGCTTAACAGGAAAGGAAAGAATAAAGACATATTCTCAAAGGCATATAGTTGAAGCAGCTCTATTTATACCCATTCCCTCATGGGTTGTTGCTATTTAAACGATCGCTGACTGGCACCAGTTCCTCATCAAATATTCTCTATATCTCATCTTTCACACAATCTCATTATCTCTATGGAGATGCTCTTGTTTCTGAACGAATCATAAATCTTTCATAGGTTTCGTATGTGGAGTACTGTTTTATGGCGCTTATGTGTATTCGTATGCGCAGAATGTGGGAATGCCAATTATAGGGGTGCCGAGGTGCCTTATAAAACCCTTTTCTGTGCCTGTGACATTTCCTTTTTCGGTCAAAAAGAATATCCGAATTTTAGATTTGGACCCTCGTACAGAAGCTTATTGTCTAAGCCTGAATTCAGTCTGCTTTAAACGGCTTCCGCGGAGGAAATATTTCCATCTCTTGAATTCGTACAACATTAAACGTGTGTTGGGAGTCGTATACTGTTAGGGTCTGTAAACTTGTGAACTCTCGGCAAATGCCTTGGTGCAATTACGTAATTTTAGCCGCTGAGAAGCGGATGGTAATGAGACAAGTTGATATCAAACAGATACATATTTAAAAGAGGGTACCGCTAATTTAGCAGGGCAGTATTATTGTAGTTTGATATGTACGGCTAACTGAACCTAAGTAGGGATATGAGAGTAAGAACGTTCGGCTACTCTTCTTTCTAAGTGGGATTTTTCTTAATCCTTGGATTCTTAAAAGGTTATTAAAGTTCCGCACAAAGAACGCTTGGAAATCGCATTCATCAAAGAACAACTCTTCGTTTTCCAAACAATCTTCCCGAAAAAGTAGCCGTTCATTTCCCTTCCGATTTCATTCCTAGACTGCCAAATTTTTCTTGCTCATTTATAATGATTGATAAGAATTGTATTTGTGTCCCATTCTCGTAGATAAAATTCTTGGATGTTAAAAAATTAAAGGGACTATATCTAGTCAAGACGATACTGTCAGTAGCAGCGATGGCAGCGTGGCTTGTGGTAGCAACACTATCATGGTATCACTAACGTAAAAGTTCCTCAATATTGCAATTTGCTTGAACGGATGCTATTTCAGAATATTTCGTACTTACACAGGCCATACATTAGAATAATATGTCACATCACTGTCGTAACACTCTTTATTCACCGAGCAATAATACGGTAGTGGCTCAAACTCATGCGGGTGCTATGATACAATTATATCTTATTTCCATTCCCATATGCTAACCGCAATATCCTAAAAGCATAACTGATGCATCTTTAATCTTGTATGTGACACTACTCATACGAAGGGACTATATCTAGTCAAGACGATACTGTGATAGGTACGTTATTTAATAGGATCTATAACGAAATGTCAAATAATTTTACGGTAATATAACTTATCAGCGGCGTATACTAAAACGGACGTTACGATATTGTCTCACTTCATCTTACCACCCTCTATCTTATTGCTGATAGAACACTAACCCCTCAGCTTTATTTCTAGTTACAGTTACACAAAAAACTATGCCAACCCAGAAATCTTGATATTTTACGTGTCAAAAAATGAGGGTCTCTAAATGAGAGTTTGGTACCATGACTTGTAACTCGCACTGCCCTGATCTGCAATCTTGTTCTTAGAAGTGACGCATATTCTATACGGCCCGACGCGACGCGCCAAAAAATGAAAAACGAAGCAGCGACTCATTTTTATTTAAGGACAAAGGTTGCGAAGCCGCACATTTCCAATTTCATTGTTGTTTATTGGACATACACTGTTAGCTTTATTACCGTCCACGTTTTTTCTAGCACCATATACTTACCACTCCATTTATGAATCAGTACCCCACACCACACCCACACACCCACACACCACACCACACACCACACCACACCCACACACACACATCCTAACACTACCCTAACACAGCCCTAATCTAACCCTGGCCAACCTGTCTCTCAACTTACCCTCCATTACCCTGCCTCCACTCGTTACCCTGTCCCATTCAACCATACCACTCCGAACCACCATCCATCCCTCTACTTACTACCACTCACCCACCGTTACCCTCCAATTACCCATATCCAACCCACTGCCACTTACCCTACCATTACCCTACCATCCACCATGACCTACTCACCATACTGTTCTTCTACCCACCATATTGAAACGCTAACAAATGATCGTAAATAACACACACGTGCTTACCCTACCACTTTATACCACCACCACATGCCATACTCACCCTCACTTGTATACTGATTTTACGTACGCACACGGATGCTACAGTATATACCATCTCAAACTTACCCTACTCTCAGATTCCACTTCACTCCATGGCCCATCTCTCACTGAATCAGTACCAAATGCACTCACATCATTATGCACGGCACTTGCCTCAGCGGTCTATACCCTGTGCCATTTACCCATAACGCCCATCATTATCCACATTTTGATATCTATATCTCATTCGGCGGTCCCAAATATTGTATAACTGCCCTTAATACATACGTTATACCACTTTTGCACCATATACTTACCACTCCATTTATATACACTTATGTCAATATTACAGAAAAATCCCCACAAAAATCACCTAAACATAAAAATATTCTACTTTTCAACAATAATACATAAACATATTGGCTTGTGGTAGCAACACTATCATGGTATCACTAACGTAAAAGTTCCTCAATATTGCAATTTGCTTGAACGGATGCTATTTCAGAATATTTCGTACTTACACAGGCCATACATTAGAATAATATGTCACATCACTGTCGTAACACTCTTTATTCACCGAGCAATAATACGGTAGTGGCTCAAACTCATGCGGGTGCTATGATACAATTATATCTTATTTCCATTCCCATATGCTAACCGCAATATCCTAAAAGCATAACTGATGCATCTTTAATCTTGTATGTGACACTACTCATACGAAGGGACTATATCTAGTCAAGACGATACTGTGATAGGTACGTTATTTAATAGGATCTATAACGAAATGTCAAATAATTTTACGGTAATATAACTTATCAGCGGCGTATACTAAAACGGACGTTACGATATTGTCTCACTTCATCTTACCACCCTCTATCTTATTGCTGATAGAACACTAACCCCTCAGCTTTATTTCTAGTTACAGTTACACAAAAAACTATGCCAACCCAGAAATCTTGATATTTTACGTGTCAAAAAATGAGGGTCTCTAAATGAGAGTTTGGTACCATGACTTGTAACTCGCACTGCCCTGATCTGCAATCTTGTTCTTAGAAGTGACGCATATTCTATACGGCCCGACGCGACGCGCCAAAAAATGAAAAACGAAGCAGCGACTCATTTTTATTTAAGGACAAAGGTTGCGAAGCCGCACATTTCCAATTTCATTGTTGTTTATTGGACATACACTGTTAGCTTTATTACCGTCCACGTTTTTTCTACAATAGTGTAGAAGTTTCTTTCTTATGTTCATCGTATTCATAAAATGCTTCACGAACACCGTCATTGATCAAATAGGTCTATAATATTAATATACATTTATATAATCTACGGTATTTATATCATCAAAAAAAAGTAGTTTTTTTATTTTATTTTGTTCGTTAATTTTCAATTTCTATGGAAACCCGTTCGTAAAATTGGCGTTTGTCTCTAGTTTGCGATAGTGTAGATACCGTCCTTGGATAGAGCACTGGAGATGGCTGGCTTTAATCTGCTGGAGTACCATGGAACACCGGTGATCATTCTGGTCACTTGGTCTGGAGCAATACCGGTCAACATGGTGGTGAAGTCACCGTAGTTGAAAACGGCTTCAGCAACTTCGACTGGGTAGGTTTCAGTTGGGTGGGCGGCTTGGAACATGTAGTATTGGGCTAAGTGAGCTCTGATATCAGAGACGTAGACACCCAATTCCACCAAGTTGACTCTTTCGTCAGATTGAGCTAGAGTGGTGGTTGCAGAAGCAGTAGCAGCGATGGCAGCGACACCAGCGGCGATTGAAGTTAATTTGACCATTGTATTTGTTTTGTTTGTTAGTGCTGATATAAGCTTAACAGGAAAGGAAAGAATAAAGACATATTCTCAAAGGCATATAGTTGAAGCAGCTCTATTTATACCCATTCCCTCATGGGTTGTTGCTATTTAAACGATCGCTGACTGGCACCAGTTCCTCATCAAATATTCTCTATATCTCATCTTTCACACAATCTCATTATCTCTATGGAGATGCTCTTGTTTCTGAACGAATCATAAATCTTTCATAGGTTTCGTATGTGGAGTACTGTTTTATGGCGCTTATGTGTATTCGTATGCGCAGAATGTGGGAATGCCAATTATAGGGGTGCCGAGGTGCCTTATAAAACCCTTTTCTGTGCCTGTGACATTTCCTTTTTCGGTCAAAAAGAATATCCGAATTTTAGATTTGGACCCTCGTACAGAAGCTTATTGTCTAAGCCTGAATTCAGTCTGCTTTAAACGGCTTCCGCGGAGGAAATATTTCCATCTCTTGAATTCGTACAACATTAAACGTGTGTTGGGAGTCGTATACTGTTAGGGTCTGTAAACTTGTGAACTCTCGGCAAATGCCTTGGTGCAATTACGTAATTTTAGCCGCTGAGAAGCGGATGGTAATGAGACAAGTTGATATCAAACAGATACATATTTAAAAGAGGGTACCGCTAATTTAGCAGGGCAGTATTATTGTAGTTTGATATGTACGGCTAACTGAACCTAAGTAGGGATATGAGAGTAAGAACGTTCGGCTACTCTTCTTTCTAAGTGGGATTTTTCTTAATCCTTGGATTCTTAAAAGGTTATTAAAGTTCCGCACAAAGAACGCTTGGAAATCGCATTCATCAAAGAACAACTCTTCGTTTTCCAAACAATCTTCCCGAAAAAGTAGCCGTTCATTTCCCTTCCGATTTCATTCCTAGACTGCCAAATTTTTCTTGCTCATTTATAATGATTGATAAGAATTGTATTTGTGTCCCATTCTCGTAGATAAAATTCTTGGATGTTAAAAAATTAAAGGGACTATATCTAGTCAAGACGATACTGTCAGTAGCAGCGATGGCAGCGTGGCTTGTGGTAGCAACACTATCATGGTATCACTAACGTAAAAGTTCCTCAATATTGCAATTTGCTTGAACGGATGCTATTTCAGAATATTTCGTACTTACACAGGCCATACATTAGAATAATATGTCACATCACTGTCGTAACACTCTTTATTCACCGAGCAATAATACGGTAGTGGCTCAAACTCATGCGGGTGCTATGATACAATTATATCTTATTTCCATTCCCATATGCTAACCGCAATATCCTAAAAGCATAACTGATGCATCTTTAATCTTGTATGTGACACTACTCATACGAAGGGACTATATCTAGTCAAGACGATACTGTGATAGGTACGTTATTTAATAGGATCTATAACGAAATGTCAAATAATTTTACGGTAATATAACTTATCAGCGGCGTATACTAAAACGGACGTTACGATATTGTCTCACTTCATCTTACCACCCTCTATCTTATTGCTGATAGAACACTAACCCCTCAGCTTTATTTCTAGTTACAGTTACACAAAAAACTATGCCAACCCAGAAATCTTGATATTTTACGTGTCAAAAAATGAGGGTCTCTAAATGAGAGTTTGGTACCATGACTTGTAACTCGCACTGCCCTGATCTGCAATCTTGTTCTTAGAAGTGACGCATATTCTATACGGCCCGACGCGACGCGCCAAAAAATGAAAAACGAAGCAGCGACTCATTTTTATTTAAGGACAAAGGTTGCGAAGCCGCACATTTCCAATTTCATTGTTGTTTATTGGACATACACTGTTAGCTTTATTACCGTCCACGTTTTTTCTAGCACCATATACTTACCACTCCATTTATGAATCAGTACC Protein coding sequence Protein coding sequence
Topics in sequence annotation • Markov chains • Hidden Markov models • Forward/Backward/Viterbi algorithms • Applications to genome segmentation
How do cells function under different conditions? • Measure mRNA/proteins levels under different environmental conditions • Compare levels of genes under different conditions
Topics in data analysis from high-throughput experiments • Clustering algorithms • hierarchical clustering • k-means clustering • EM-based clustering • Interpretation of clusters • Evaluation of clusters
How do molecular entities interact within a cell? cell Network model A B A controls B
Topics in network modeling • Different types of biological networks • Probabilistic graphical models for representing networks • Practical/popular algorithms of network inference • Evaluating inferred networks
Using networks to understand complex biological processes Cho, Kim Przytycka, PLOS Computational Biology 2012
What networks get perturbed in a disease? Subnetworks of genes predictive of cancer prognosis Chuan et al, MSB 2007
Topics in Network-based approaches • Analyzing networks: graph properties, degree distributions • Using networks to study perturbations/diseases in living systems • Using networks to integrate different types of high-throughput datasets
Reading assignment for Sep 5th • Life and Its Molecules A Brief Introduction Lawrence Hunter • http://www.biostat.wisc.edu/bmi576/papers/hunter04.pdf