210 likes | 340 Views
RSS Mini Conference 2013-2014 Candyce Tracy. Do All Fractions Fit on a Number Line?. Outcomes. Learn something NEW…….. preferably about fractions. Leave curious about what the new standards expect in terms of fractions instruction. Is ½ always equivalent to ½?.
E N D
RSS Mini Conference 2013-2014 Candyce Tracy Do All Fractions Fit on a Number Line?
Outcomes • Learn something NEW…….. preferably about fractions. • Leave curious about what the new standards expect in terms of fractions instruction.
Is ½ always equivalent to ½? Talk with your partner about this question?
Sharing Brownies How can I cut the brownie so that two people can have equal shares?
Sharing Brownies Please fold into the following equal pieces Label each piece with the fraction name • 4 equal pieces • 8 equal pieces • 3 equal pieces • 6 equal pieces Cut apart each equal piece
Ordering Fractions Order these unit fractions from smallest to largest with the smallest over to the left and the largest over to the right.
Fraction Game • Use a sticky note to represent the whole numbers on your number line? • Shuffle fractions cards • Turn over 5 fractions cards (not using percents) • Determine with your group where you would place these numbers on your number line. • Record in your journal • After 1st round, turn over 10 cards
Identify fractions between fractions For each fraction pair find 3 fractions using at least 2 different strategies ⅛ and ¼ ¼ and⅕ ¼ and ⅓
Fractions on a number line 18/100
147 first year elementary majors • Only 24% knew that there was an infinite amount of numbers between ¼ and ⅕. • 43% claimed that there are no numbers between ¼ and ⅕ and • 30% claimed that ⅕ is the successor to ¼
Reasoning about magnitude Aunt Sally has a jar that holds one cup of liquid. Her salad dressing recipe calls for 2/3 cup of oil, 1/8 cup of vinegar, and 1/4 cup of juice. Is the jar large enough to hold all the oil, vinegar, and juice?
Give a rough estimate of the values represented by points A and B on the number lines below. A 1 B 1
By comparing fractions, students come to understand them as something more—numbers that have magnitude.
Density – between any two rational numbers we can find a third rational number. This property leads to the fact that between any two rational numbers, no matter how close, there are infinitely many other rational numbers.
Rational numbers allow us to gain as much precision as we desire.
Reflection of Session Please use an index card • Something you learned • A Question you still have • How can I better facilitate your learning?