1 / 25

QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS

QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS.

lorene
Download Presentation

QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. QUE SON FUNCIONES MATEMATICAS CONCEPTOS BASICOS • En matemática, una función (f) es una relación entre un conjunto dado X (llamado dominio) y otro conjunto de elementos Y (llamado codominio) de forma que a cada elemento x del dominio le corresponde un único elemento f(x) del codominio (los que forman el recorrido, también llamado rango o ámbito). • En lenguaje cotidiano o más simple, diremos que las funciones matemáticas equivalen al proceso lógico común que se expresa como “depende de”. • Las funciones matemáticas pueden referirse a situaciones cotidianas, tales como: el costo de una llamada telefónica que depende de su duración, o el costo de enviar una encomienda que depende de su peso.

  2. FUNCIONES REALES Las funciones reales se pueden clasificar de acuerdo a su estructura en tres grupos

  3. FUNCIONES POLINOMICAS

  4. FUNCIÓN CONSTANTE Es una función de la forma f(x) = k, donde k es una constante. La grafica que se origina es una línea recta paralela al eje x. El dominio de la función constante son todos los números reales y el rango es un conjunto unitario formado por el elemento imagen de todos los elementos del dominio.

  5. FUNCIÓN LINEAL Es una función de la forma f(x) = mx + b, donde m es la pendiente y b es la abscisa donde la recta intercepta al eje. La grafica que se origina es una línea recta, si m es positiva la recta se inclina hacia la derecha y si m es negativa la recta se inclina hacia la izquierda.

  6. I. Función Lineal Es de la forma f(x) = mx + n con m : Pendiente n : Ordenada del punto de intersección entre la recta y el eje Y (coeficiente de posición). Ejemplo: La función f(x) = 5x – 3, tiene pendiente 5 e intersecta al eje Y en la ordenada -3.

  7. I. Función Lineal • Análisis de la Pendiente Para saber con qué tipo de función se está trabajando, se debe analizar el signo de la pendiente. • Si m < 0, entonces la función es decreciente. • Si m = 0, entonces la función es constante. • Si m > 0, entonces la función es creciente.

  8. I. Función Lineal Y Y II) m > 0 n > 0 m < 0 n > 0 n n X X Y Y III) IV) m > 0 n < 0 m < 0 n < 0 X X I) n n

  9. FUNCIÓN CUADRÁTICA Es una función de la forma f(x) = ax2+ bx +c, donde a,b,c y son números reales. La grafica de la función cuadrática es una curva llamada parábola; si a es positiva, la grafica abre hacia arriba y si a es negativa la grafica abre hacia abajo. La ecuación algebraica tiene el 2 como máximo exponente de la variable.

  10. FUNCIÓN CUADRÁTICA Son funciones polinómicas es de segundo grado, siendo su gráfica una parábola. f(x) = ax² + bx +c Representación gráfica de la parábola Podemos construir una parábola a partir de estos puntos: Vértice Por el vértice pasa el eje de simetría de la parábola. La ecuación del eje de simetría es:

  11. PUNTOS DE CORTE CON EL EJE OX En el eje de abscisas la segunda coordenada es cero, por lo que tendremos: ax² + bx +c = 0 Resolviendo la ecuación podemos obtener: Dos puntos de corte: (x1, 0) y (x2, 0) si b² − 4ac > 0 Un punto de corte: (x1, 0) si b² − 4ac = 0 Ningún punto de corte si b² − 4ac < 0

  12. Ejemplos: Representar la función f(x) = x² − 4x + 3. 1. Vértice x v = − (−4) / 2 = 2 y v = 2² − 4• 2 + 3 = −1 V(2, −1)

  13. . Puntos de corte con el eje OX x² − 4x + 3 = 0 (3, 0) (1, 0) Punto de corte con el eje OY (0, 3)

  14. FUNCIONES ESPECIALES

  15. FUNCIÓN VALOR ABSOLUTO La función valor absoluto se define como: Es de la forma f(x) = IxI, cuyo dominio son los reales y el rango son los reales mayores o iguales a cero. La grafica que se obtiene es una curva en forma de v.

  16. FUNCIÒN RAIZ CUADRADA Es una función que asigna a un argumento su raíz cuadrada positiva. Es de la forma f(x) = √x , donde el dominio de la función son los valores de x que hacen que el radicando sea positivo y el rango son los reales mayores o iguales a cero. La grafica que se obtiene es una curva ascendente que está por encima del eje x

  17. FUNCIÓN RACIONAL Es una función de la forma f(x) = p(x)/q(x) , donde p(x) y q(x) son polinomios y q(x)≠0. La función racional no está definida para valores de x en el cual q(x) se hace diferente de cero, este valor al representarlo gráficamente es una asíntota. La grafica que se obtiene son curvas interrumpidas por la asíntota.

  18. FUNCIÓN TRIGONOMÉTRICA Las funciones trigonométricas surgen de estudiar el triangulo rectángulo y observar que las razones (cocientes) entre las longitudes de dos lados cualesquiera dependen del valor de los ángulos del triangulo. Se distinguen seis tipos de funciones trigonométricas, Las cuales cada una de ellas tiene su dominio, rango, periodo y su gráfica es distinta, como son:

  19. FUNCIONES RADICALES Una función radical es una función que contiene raíces de variables

  20. Para hallar el dominio de una función radical se debe observar el índice de la raíz: Si el índice de la raíz es par se debe eliminar del dominio de todos los valores de x que hacen el radicando sea negativo, o los que generen restricciones en el mismo Si el índice es impar , la función esta definida para todos los reales, excepto los valores de x que generen restricciones en el radicando Las funciones, y Son funciones radicales, la función f(x), = no es radical.

  21. GRAFICA DE UNA FUNCION RADICAL • Para realizar el bosquejo de la grafica de una función radical se realizan los pasos para graficar las funciones radicales, así: • Primero, se busca donde f(x) = 0 o donde f(x) no esta definida • Segundo, se determina si tiene asitotas verticales, en el caso en que también sea racional • Tercero, se averigua el intercepto con el eje y. • Cuarto, se hallan las asitotas horizontales en caso que también sea racional • Quinto, se realiza una tabla de valores para dar mas posición a la grafica • Sexto, se traza la grafica

  22. EJEMPLOS: Trazar la grafica de las siguientes funciones. Determinar su dominio y rango:

  23. FUNCIONES TRASCENDENTALES

  24. FUNCIÓN EXPONENCIAL Es una función de la forma f(x) = ax, donde a>o y a≠1 .cuyo dominio son los números reales y el rango son los reales mayores que cero. La grafica que se obtiene es una curva ascendente si a>1 y descendente si o<a<1.

  25. FUNCIÓN LOGARÍTMICA Es una función inversa a la función exponencial, es de la forma f(x) = logax, donde a>o y a≠1. La grafica que se obtiene es una curva simétrica a la función exponencial.

More Related