1 / 32

Introduction to Scheme

Introduction to Scheme. Scheme. Meta-language for coding interpreters “clean” semantics Scheme = LISP + ALGOL simple uniform syntax; symbols and lists block structure; static scoping expression : evaluated for its value statement : evaluated for its effect Dynamic type checking

loyal
Download Presentation

Introduction to Scheme

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Introduction to Scheme L2Scm

  2. Scheme • Meta-language for coding interpreters • “clean” semantics • Scheme = LISP + ALGOL • simple uniform syntax; symbols and lists • block structure; static scoping • expression : evaluated for its value • statement : evaluated for its effect • Dynamic type checking • flexible but inefficient (rapid prototyping) L2Scm

  3. Expressions Literals Variables Procedure calls • Literals • numerals(2), strings(“abc”), boolean(#t), etc. • Variables • Identifier represents a variable. Variable reference denotes the value of its binding. x 5 ref L2Scm

  4. Expressible vs Denotable values • Booleans are expressible in (early) FORTRAN, but not denotable. • Functions are denotable in Pascal/C, but are not expressible. • In (functional subset of) Scheme, both value spaces are identical. • In (full) Scheme, variable references (pointers) are denotable but not expressible. L2Scm

  5. Scheme Identifiers • E.g., y,x5,+,two+two,zero?, etc • (Illegal) 5x,y)2,ab c, etc • Identifiers • reserved keywords • variables • pre-defined functions/constants • ordinary • functions = procedures L2Scm

  6. Procedure Call (application) • (operator-expr operand-expr ...) • prefix expression (proc/op arg1 arg2 arg3 ...) • Order of evaluation of the sub-expressions is “explicitly” left unspecified by Scheme. • cf. C is silent about it. • cf. Java specifies a left to right processing. (+ x (p 2 3)) ((f 2 3) 5 6) L2Scm

  7. Special Forms • Definition • (define <var> <expr>) > (define false #f) • Conditional • (if <test> <then> <else>) > (if (zero? 5) 0 #t) > (if '() 'emptyList'never) emptyList L2Scm

  8. Data Types • values, operations, canonical representation • Type-checking • static : compile-time : efficient • dynamic : run-time : flexible • numbers: +, -, *, number?, =, etc. • booleans: #t, #f, boolean?, etc. • strings: string?, string->list, etc. L2Scm

  9. Symbols • Identifiers treated as primitive values. • Distinct from identifiers that name variables in the program text. • Distinct from strings (sequence of characters). • Primitive operations quote symbol? • Facilitates meta-programming L2Scm

  10. Lists • Ordered sequence of elements of arbitrary types (Heterogeneous) • operations • car, cdr, cons, null?, ... • list, append, ... • cadr, caadr, caddddr, … (cadar X) = (car (cdr (car X))) L2Scm

  11. Pairs: Expression, Internal Representation and Print form (cons 'a 'b) (cons 'a (cons 'b '()) ) = (a . b) b a = (a . (b . ()) ) = (a b) () a b L2Scm

  12. Domain Equations for defining S-Expressions and Lists Sexpr = Atoms U SexprXSexpr List = () U SexprXList L2Scm

  13. Equivalence : Syntactic vs Semantic (eq? (cons 3 '()) (cons 3 '())) #f (define a (cons 3 '())) (define b (cons 3 '())) (eq? a b) #f (define c a) (eq? a c) #t L2Scm

  14. Equivalence : Syntactic vs Semantic (equal? (cons 3 '()) (cons 3 '())) #t (equal? (make-vector 5 'a) (make-vector 5 'a)) #t (equal? (lambda(x)x) (lambda(y)y)) #f Formallyunspecified L2Scm

  15. Vectors • Both records and arrays provide random access to components. However, records are heterogeneous, while arrays are homogeneous. • Vectors are heterogeneous structures that provide random access to components using a computable index. L2Scm

  16. Constructors and accessors (define v (vector 1 (+ 1 2))) #(1 3) (vector-ref v 0) 1 (vector-length v) 2 • Index is 0-based. L2Scm

  17. Procedures • In Scheme, procedures are first-class objects. That is, they may be (i) passed to procedures or (ii) returned from procedures or (iii) stored in a data structure. (procedure? append) #t (if (procedure? 3) car cdr) #<procedure> L2Scm

  18. (( (if (procedure? procedure?) car cdr) (cons cdr car)) '(list append)) = ( (car (cons cdr car)) '(list append)) = (cdr '(list append)) = (append) L2Scm

  19. Apply-function (apply cons '( x (y z))) = (cons 'x '(y z)) = (x y z) (apply f '(a1 a2 ... an)) = (f 'a1 'a2 ... 'an) (apply <func> <list-of-args>) L2Scm

  20. Apply-function • Apply-function is not compelling if the function is of fixed arity and statically known. • Apply-function is indispensable if we wish to define variable arity function or the function will be computed dynamically. • Apply-function enables us to unify functions of different arities, and is an important component of an interpreter. L2Scm

  21. (apply apply (list procedure? (list apply))) = (apply apply [proc?-fn [ apply-fn ] ] ) = (applyproc-fn [apply-fn] ) = (procedure? apply) = #t L2Scm

  22. Anonymous Functions (lambda<formals-list> <body-expr>) E.g., ((lambda (n) (+ n 2)) (+ 1 4) ) = 7 • Evaluate actual argument expressions • Bind these values to corresponding formals in formals-list • Evaluate body expression (static scoping) L2Scm

  23. Variable Arity Procedures (+ 1 2 3) (append '(1 (p q)) '() '(a b)) (list 1.2 3/4 5) (lambda<formal> <body>) • <formal> is bound to the list of actual argument values supplied in a call. L2Scm

  24. (define mul (lambda x (if (null? x) 1 (* (car x) (applymul (cdrx)) ) )) ; 1 is identity w.r.t * ); assuming * is binary (mul 2 (+ 2 2) 5) L2Scm

  25. Binding constructs in Scheme • define • binds value to a name. • l-function application • binds formal parameters to actual argument values. • let-constructs • introduces local bindings • let • let* • letrec L2Scm

  26. let-construct ( let ( (var1 exp1) … (varn expn)) exp ) • exp1 to expn are evaluated in the surrounding context. • var1,…,varn are visible only in exp. • (let ( (x 2) (y 7) ) y) • 7 L2Scm

  27. (let ( (x y) (y 7) ) y) • *error* “y” undefined • (define y 5) • (let ( (x y) (y 7) ) y) • 7 • (let ( (x y) (y 7) ) x) • 5 • (let ( (y 7) (x y) ) x) • 5 (not 7) L2Scm

  28. (define y 5) • (let ( (y 7) (x y) ) x) • 5 • (let ( (y 7) ) (let ( (x y) ) x) ) • 7 • (let* ( (y 7) (x y) ) x) • 7 • let* abbreviates nested-lets. • Recursive and mutually recursive functions cannot be defined using let and let*. L2Scm

  29. letrec-construct ( letrec ( (var1 exp1) … (varn expn)) exp ) • var1,…,varn are visible in exp1 to expn in addition to exp. • (letrec ( (x (lambda() y)) (y (lambda() x)) ) x ) L2Scm

  30. letrec-construct • (letrec ( (f (lambda(n) (if (zero? n) 1 (f (- 1 n)) )) ) ) (f 5) ) • 1 • (letrec ( ( f (lambda () g) ) ( g 2) ) ( f ) ) • 2 L2Scm

  31. boolean connectives (or test1 test2 … testn) (and test1 test2 … testn) • or and and are not Scheme procedures. • They use short circuit evaluation rather than traditional call-by-value. L2Scm

  32. (cond (test1 exp1) (test2 exp2) … (testn expn) (else exp) ) (case key (keylist1 exp1) (keylist2 exp2) … (keylistn expn) (else exp) ) Branching constructs L2Scm

More Related