1 / 61

ROOT

Learn about setting up the ROOT environment, available command line options, and different types of commands. Explore macro paths, history files, and automation features in ROOT data analysis framework.

lucilew
Download Presentation

ROOT

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ROOT An Object Oriented Data Analysis Framework Lecture 2 ROOT Lecture 2

  2. Lecture 2 • Lecture 1 • GUI, Command line • Lecture 2 • Command Line (CINT) • Scripts (CINT & ACLiC) • Functions and Fitting ROOT Lecture 2

  3. Command Line • Environment Settings • Command types • CINT Commands • Global Variables • TObject ROOT Lecture 2

  4. Environment Settings • Environment setting file: • $ROOTSYS/etc/system.rootrc • looks first in current directory for .rootrc • second in $HOME/.rootrc • third in $ROOTSYS/etc/system.rootrc • Show the current settings • root[] gEnv->Print() ROOT Lecture 2

  5. Environment Settings (cont.) The .rootrc file: • The Macro Path • Unix.*.Root.MacroPath:.:$(HOME)/myRootMacros • Options in .rootrc • Root.ShowPath: false History File • $HOME/.root_hist Automatically Executing Macros • rootlogon.C • rootlogoff.C • rootalias.C ROOT Lecture 2

  6. Command Line Options • > root -? • Usage: root [-l] [-b] [-n] [-q] [file1.C ... fileN.C] • Options: • -b : run in batch mode without graphics • -n : do not execute logon and logoff macros as specified in .rootrc • -q : exit after processing command line macro files • -l : do not show splash screen ROOT Lecture 2

  7. Three Types of Commands • CINT commands start with “.” • root[0].? • this command will list all the CINT commands • root[1].X <filename.C> • load <filename.C> and execute function <filename> • root[2].L [filename.C] • load [filename.C] • SHELL commands start with “.!” for example:root[3] .! ls ROOT Lecture 2

  8. Three Types of Commands 3. C++ syntax (almost) root [0] TBrowser *b = new TBrowser()or root [0] TBrowser *b = new TBrowser(); The optional Semicolon: Leave off the semicolon to see the return value of the command. root [0] 23+5 // show return value (int)28 root [1] 23+5; // no return value root [2] ROOT Lecture 2

  9. Command Line Help • Use the Tab feature to get help … root [0] b = new TB <TAB> root [1] b = new TBrow<TAB> root [2] b = new TBrowser(<TAB> • Find List of Methods • Find Parameter list ROOT Lecture 2

  10. Coding Conventions Based on the Taligent coding conventions • Classes begin withT TTree, TBrowser • Non-class types end with_t Int_t • Data members begin with f fTree • Member functions begin with a capital Loop() • Constants begin with k kInitialSize, kRed • Non-local variablesbegin with g gEnv • Static data members begin with fg fgTokenClient ROOT Lecture 2

  11. CINT Types ROOT Lecture 2

  12. CINT Extensions to C++ • 1. Declaration can be omitted • f = new TFile("Example.root") • 2. "." notation rather than "->"f.ls() • 3. Search for an object by its name • TH1F *smallHisto = new TH1F ("small","fPx 100",100,-5,5); small->Draw(); Warning: These will not work in compiled code! ROOT Lecture 2

  13. CINT Commands • [expression] evaluates the expression • root[3] 3*4 • (int)12 • .files show loaded source files • .class [name] show class definition • .g prints all objects in the root session • .ls ls on current directory • .pwd list the current directory, canvas, and style. ROOT Lecture 2

  14. Demo on CINT Commands .class root [0] .L $ROOTSYS/test/libEvent.so root [1] .class Event .g root [2] .g... 0x104c7560 Event e , size=56 0x0 private: Int_t fNtrack 0x0 private: Int_t fNseg 0x0 private: Int_t fNvertex ... ROOT Lecture 2

  15. CINT Multi-line Command Start with "{“, for example: root [] { end with '}'> Int_t j = 0; end with '}'> for (Int_t i = 0; i < 3; i++) end with '}'> { end with '}'> j= j + i; end with '}'> cout <<"i = " <<i<<", j = " <<j<<endl; end with '}'> } end with '}'> } i = 0, j = 0 i = 1, j = 1 i = 2, j = 3 ROOT Lecture 2

  16. Global Variables • gRandom • gRandom->Gaus(1,2) • You can replace the random generator with your own:delete gRandom;gRandom = new TRandom2(0); //seed=0 • gFile • gFile->GetName() • gDirectory • gDirectory->GetName() • gSystem • gSystem->HostName() ROOT Lecture 2

  17. gROOT • Global ROOT session object • gROOT->GetListOf< list type >(); • gROOT->Macro(); • gROOT->LoadMacro(); • gROOT->Time(); • gROOT->ProcessLine() ROOT Lecture 2

  18. gROOT->FindObject() TH1F *smallHisto = new TH1F ("small","fPx 100",100,-5,5); • "small" is the Object Name gROOT->FindObject("small") (class TObject*)0x104c7528 • "smallHisto" is the Variable Name gROOT->FindObject("smallHisto") (class TObject*)0x0// null pointer • FindObject needs the Object Name. ROOT Lecture 2

  19. gROOT->FindObject() (cont.) FindObject returns a pointer to TObject. This generates an error: gROOT->FindObject("small")->GetBinContent(2) This is OK: gROOT->FindObject("small")->ClassName() TH1F* histo=(TH1F*) gROOT->FindObject("small") histo->GetBinContent(2) or ((TH1F*)gROOT->FindObject("small"))->GetBinContent(2) ROOT Lecture 2

  20. gROOT->FindObject() cont. Due to CINT magic this is also OK: TH1F *smallHisto = new TH1F ("small","fPx 100",100,-5,5); small->GetBinContent(2); • CINT implicitly executes a FindObject("small") • Casts it to the correct class • Creates a variable called "small" of the correct class Warning: This will not work in compiled code! ROOT Lecture 2

  21. Demonstration: FindObject FindObject(): root [3] f = new TFile("Example.root") root [4] .ls root [5] gROOT->FindObject("myTree") root [6] myTree ROOT Lecture 2

  22. TObject: The Mother of all ROOT Objects • Defines protocol and default behavior for all objects in ROOT. • I/O • Drawing/Painting • TObjects can be stored in collection classes. • Introspection, Reflection, Run Time Type Identification ROOT Lecture 2

  23. TObjectRTTI • RTTI = the ability of a class to reflect upon itself or to "look inside itself" at run time. • TClass implements RTTI • To get the TClass from a TObject descendent:obj->IsA() • TClass can find the: • Methods • Method arguments • Data members • Base classes ROOT Lecture 2

  24. Summary (Command Line) • Environment Settings • Command types • CINT Commands • Global Variables • TObject ROOT Lecture 2

  25. Writing Scripts • Named and Un-named Scripts • Debugging • ACLiC ROOT Lecture 2

  26. Scripts • Un-named Script • Starts with "{" and ends with "}" • All variables are in the global scope • No class definitions • No function declarations • No parameters • Named Script • C++ functions • Scope rules follow standard C++ • Function with the same name as the file is executed with a .x Parameters Class definitions (derived from a compiled class at your own risk) ROOT Lecture 2

  27. Scripts Examples • Un-named Script: hello.C { cout << "Hello" << endl; } • Named Script: say.C void say(char * what = "Hello") { cout << what << endl; } • Executing the Named Script root [3] .x say.C Hello root [4] .x say.C("Hi there") Hi there ROOT Lecture 2

  28. Resetting the Environment • gROOT->Reset() • Calls destructors of all objects created on the stack • Objects on Heap are not deleted, but pointer variable is disassociated ROOT Lecture 2

  29. Debugging: Stepping .s set the step mode to step into function .S set the step mode to go over function or loop .e continue to end of the function .c continue to next breakpoint .c 45 continue to line 45 .p <var> print the value of var ROOT Lecture 2

  30. Debugging: Breakpoints .trace MyClass prints the executing code to window .deltrace MyClass removes the trace .break MyClass breaks at each method of MyClass .delbreak MyClass removes the break .b 34 sets a break point at line 34 .db 34 removes the break point at line 34 ROOT Lecture 2

  31. Debugging: Inspecting DrawClass() Graphic list of methods including ancestors Inspect() Draw the current contents of an object Dump() Lists the current contents of an object gDebug = 1 Prints debugging information ROOT Lecture 2

  32. Tracking Memory Leaks • Counting Objects and Memory use • In the .rootrc or system.rootrc file: Root.MemStat: 1 Root.ObjectStat:1 • Print the Object count and Memory use gObjectTable->Print(); ROOT Lecture 2

  33. Tracking Memory Leaks • Example output: Before .x FirstContour.C: count on heap size total size heap size Total: 1,079 1,046 3,160 49,99245,824 After: Total: 1,783 1,749 17,920 118,912 114,568 • Put gObjectTable->Print() before and after code segment in your script to find memory leaks. ROOT Lecture 2

  34. ACLiC: Automatic Compiler of Libraries for CINT • Use an external compiler to create a shared library from a macro. • Use root [0] .L MyMacro.C++ Always recompile root [0] .L MyMacro.C+ Recompile if needed ROOT Lecture 2

  35. ACLiC Use CompileMacro options are: k : keep the shared library after the session ends f : force recompilation To set the include path: .include "I$HOME/mypackage/include"; Or gSystem->SetIncludePath("-I$HOME/mypackage/include") ROOT Lecture 2

  36. ACLiC Advantages • Advantages : • syntax checking • about five times faster • full C++ feature set • Disadvantage: • for short scripts compilation overhead can be larger than script execution time ROOT Lecture 2

  37. ACLiC Demo • .L ScriptCompilerDemo.C++ root [0] gROOT->Time() root [1] .L ACLiCDemo.C++ root [2] .files root [3] Demo() • Compare performance with CINT root [0] gROOT->Time() root [1] .L ACLiCDemo.C root [3] Demo() ROOT Lecture 2

  38. Summary (Scripts) • Named and Un-named Scripts • Debugging • ACLiC ROOT Lecture 2

  39. Functions and Fitting • Function Objects (TF1) • Three constructors for TF1 • User Defined Functions • Fitting • Fit() • Fitting with a user defined function • Fitting subranges and combining functions • Demonstration of background and signal function ROOT Lecture 2

  40. Function Objects (TF1) • Built in function objects • see this link for a full list of built in functions http://root.cern.ch/root/html/TFormula.html#TFormula:TFormula • use the Fit Panel • Creating your own function objects • TF1, TF2, TF3 • Three Signatures for the TF1 constructor ROOT Lecture 2

  41. TF1 Constructors 1. A C++ like expression using x with a fixed set of operators and functions defined in TFormula TF1 *f1 = new TF1("f1","sin(x)/x",0,10); f1->Draw(); TF1 *f2 = new TF1("f2","f1 * 2",0,10); f2->Draw(“same”) ROOT Lecture 2

  42. TF1 Constructors (cont.) • 2. Same as the previous TF1 with Parameters • Call the constructor with parameter indices • TF1 *f1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3); • See TFormula for valid expressions • Set the parameters explicitly • f1->SetParameter(0,10);f1->SetParameter(1,5);f1->Draw(); ROOT Lecture 2

  43. TF1 Constructors (cont.) • 3. Use a defined function • Define a functionDouble_t MyFunction(Double_t *x, Double_t *par){ Float_t xx = x[0]; Double_t val= TMath::Abs(par[0]*sin(par[1]*xx)/xx); return val;} • TF1 constructor TF1 *f1 = new TF1("f1",MyFunction,0,10,2); • NOTE: The 2 is the number of parameters in MyFunction. • Set the parametersf1->SetParameters(0,1); ROOT Lecture 2

  44. par[2] : Constante par[0] : A par[3] : X0 par[1] : B par[4] : s par[0] : P0 par[4] : Amplitude sinus par[5] : Constante par[8] : Phase sinus par[1] : P1 par[6] : X0 par[2] : P2 par[7] : s par[3] : P3 Combination of Functions • You can mix predefined functions TF1 *f4=new TF1("f4","gaus(2)+expo(0)",0,10,5) • Another example TF1 *f5=new TF1("f5","pol3(0)+[4]*sin(gaus(5)+[8])",0,10,9) ROOT Lecture 2

  45. Fitting To fit a histogram: TF1 *fn1 = new TF1("f1","[0]*x*sin([1]*x)",-3,3); f1->SetParameters(10,5); • aHistogram->Fit("f1"); //name • aHistogram->Fit(fn1); // pointer ROOT Lecture 2

  46. Fitting: Example Step 1. Define the function: Double_t MyFunction (Double_t *x, Double_t *par) { Double_t arg = 0; if (par[2]) arg = (x[0] - par[1])/par[2]; Double_t fitval = par[0] * TMath::Exp(-0.5*arg*arg); return fitval; } ROOT Lecture 2

  47. Fitting (cont.) Step 2. TF1 constructorTF1 *aFunction = new TF1("MyGaus", MyFunction, -5,5,3); Step 3. Set initial value of the parametersaFunction->SetParameters(5000, h->GetMean(), h->GetRMS()); Step 4. Fit and draw the histogramh->Fit("MyGaus"); ROOT Lecture 2

  48. Fitting Sub-Ranges Example $ROOTSYS/tutorials/multifit.C • Define the range in the TF1 constructor. TF1 *g1 = new TF1("g1", "gaus", 85,95); • By default, TH1::Fit on the defined function range. Use "R" option in the Fit() method.h->Fit("g1", "R"); ROOT Lecture 2

  49. Fitting Sub-Ranges ROOT Lecture 2

  50. Fitting Sub-Ranges Define gaussian functions g1 = new TF1("m1","gaus",85,95); g2 = new TF1("m2","gaus",98,108); g3 = new TF1("m3","gaus",110,121); total = new TF1("mstotal","gaus(0)+gaus(3)+gaus(6)",85,125); From TFormula: gaus(0) is a substitute for : [0]*exp(-0.5*((x-[1])/[2])**2) and (0) means start numbering parameters at 0 ROOT Lecture 2

More Related