170 likes | 275 Views
Real-time identification of cardiac substrate anomalies. Author : Philippe Haldermans Promoters : dr. Ronald Westra dr. ir. Ralf Peeters. 13th September 2004. Contents. Motivation Forward modelling Inverse methods Results Conclusions. Motivation. Atrium fibrillation (AF)
E N D
Real-time identification of cardiac substrate anomalies Author : Philippe Haldermans Promoters : dr. Ronald Westra dr. ir. Ralf Peeters 13th September 2004
Contents • Motivation • Forward modelling • Inverse methods • Results • Conclusions
Motivation • Atrium fibrillation (AF) • cell triggers • wave maintenance by substrate anomalies • New spatial-temporal data better image of wave propagation (movie)
Forward modelling (1) • Biophysically detailed models + Luo-Rudy, Beeler-Reuter, … • Complicated for inverse method • Cellular automata + Simple and fast, especially for normal propagation • Absence of parameters for inverse estimation
Forward modelling (2) • Fitzhugh-Nagumo model • Partial differential equation
Forward modelling (3) • Discretized in time and space • Space : symmetric estimation • Time : normal estimation
Experiments (1) • Types of waves: • Planar • Spherical • Spiral • Different sorts of tissue: • Isotropic Anisotropic • Homogeneous Inhomogeneous
Experiments (2) • Refractory period • Re-entering waves • Spiral waves (spiral.avi) • Figure-8 reentry (figure8.avi) • Laws of physics • Rotations • Snellius’ law
Inverse methods • Rewriting equations linear in the parameters • Iterative linear least squares estimation • Proof of usefulness • Robustness for rounding errors • Effect of noisy data
Results (1) • Simulated data: • Good estimation of the parameters • Method holds even with noisy data • Able to find anomalies (tissue) (demo) • Data movies • Proved in theory estimation works • Practical problems with matlab
Results (2) • Real data : • First dataset (movie) • shows normal propagation • method finds smooth surface (tissue) • Second dataset (movie) • fibrillatory propagation • no anomalies in the conductivity (tissue) • example of other problem : cell triggering?
Other inverse methods (1) • Bayesian approach • estimation of the uncertainty • groups of solutions • prior distribution & likelihood function posterior distribution • can be used as first estimation for other methods
Other inverse methods (2) • Regularization • Moore-Penrose pseudo-inverse • Problems with : • Small singular values + noisy data • Possible solutions : • Truncated singular value decomposition • Tikhonov regularization
Conclusions • Identify spatial anomalies in the conductivity • Fitzhugh-Nagumo Realistic properties • Estimation method works + is robust • Real data • able to give conductivity • these examples show no problems in the conductivity
Recommendations (1) • Other forward model • Biologically more detailled • Other properties • Different inverse method • Bayesian, regularization, … • Combination: least squares with Bayesian
Recommendations (2) • Real data • More datasets • More information about the data • Combination with the spatial-temporal data measurement real-time identification