300 likes | 392 Views
Search for narrow six-quark states. L.V. Fil’kov, (1) V.L. Kashevarov, (1,2) M. Ostrick (2). (1) P.N. Lebedev Physical Institute , Moscow. (2) Institut fur Kernphysik, University of Mainz. EMIN - 2012. Supernarrow six-quark states. 6-quark state. nucleon. (dibaryon).
E N D
Search for narrow six-quark states L.V. Fil’kov,(1) V.L. Kashevarov,(1,2) M. Ostrick(2) (1) P.N. Lebedev Physical Institute , Moscow (2) Institut fur Kernphysik, University of Mainz EMIN - 2012
Supernarrow six-quark states 6-quark state nucleon (dibaryon) D N N G~ 10 100 MeV 6-quark states, decay of which into two nucleons is forbidden by the Pauli exclusion principle. M < 2mN + mpD → g + NN g + d * Wide dibaryons : G~ 10 100 MeV * Narrow dibaryons : G~ 1 1 MeV * Supernarrow dibaryons : G<< 1 keV GeV (-1)T+S P = +1
A construction of an adequate QCD model. 2. Astrophysics: an evolution of compact stars. 3. Quark-gluon plasma: specific signals of a production of QGP with the big baryon dencity. Nuclear physics: a formation of SND-nuclei; a region stability of neutron-rich nuclei.
1. P.J.G. Mulders et al. (1980) MIT bag model: D(T=0; JP = 0─, 1─, 2─; M=2110 MeV), D(1; 1─; M=2200 MeV) M > 2mN + mpD p NN 2. V.B. Kopeliovich (1993) Chiral soliton model: D(T=1; JP = 1+; M ≃1940 MeV), D(0; 2+; M ≃1990 MeV) 3. T. Krupnovniskaset al. (2001) Canonically quantized biskyrmion model: M < 2mN + mp one dibaryon with J=T=0, two dibaryons with J=T=1 4. L.V. Fil’kov (2003) Mass formula for SND: T=1, J=1± M=1904 (J=1-), 1924 (1+), 1943 (1-), 1962 (1+), 1982 (1-), 2001 (1+)
D(T=0, JP=0+ ), D(0, 0─), D(T=1, J =1+), D(1,1─) g N X = { d if T = 0 D 31S0 if T = 1 X N
p1+d→p2+pX1 L.V. Fil’kov, V.L. Kashevarov, E.S. Konobeevskiet al. Phys. Rev. C61, 044004 (2000); Eur.Phys.J. A12, 369 (2001); INR (Moscow) MpX1: 1904±2, 1926±2, 1942±2 SD: 6.0 7.0 6.3 G < 5 MeV (experimental resolutions) if X1 = n→ MX1 = mn if X1 = g+ n→ MX1 mn Simulation of mass MX1 spectra gave: MX1 = 965, 987, 1003 MeV Experiment: MX1= 966±2, 986±2, 1003±2 X1= g + n
pp d1 pp A.S. Khrykin et al. Phys. Rev. C 64, 034002 (2001) Tp= 216 MeV, E 10 MeV, q= 900 • M=1956 MeV T=2 • Uppsala pp-bramsstralung data (H. Calen, et al., Phys. Lett. B427, 248 (1998)): upper limit 10 nb.
p d p pX p d p dX1 Research Center for Nuclear Physics (Japan) H. Kuboki et al. Phys. Rev. C 74, 025203 (2006) 1. No resonance structure in the missing mass spectra of pX and dX1 was observed. 2. No resonance structure in missing mass spectra of X. (It is at variance also with the results of the work of B. Tatischeff et al. (Phys. Rev. Lett. 79, 601 (1997)) INR: beam intensity 0.1 nA RCNP: beam intensity (15 – 20) nA
A. Cichocki, PhD (2003) B. Norum et al. (LEGS) Eg= 210 – 340 MeV Pg = 99% s = 25 – 14 nb
SEARCH FOR NARROW SIX-QUARK STATES IN THE REACTIONS g d NN
The energy and angular distributions of the nucleons from the decay of SNDs The distributions over the angle between the final nucleons and over the relative difference of energies of these nucleons M=1904 MeV M=1926 MeV M=1942 MeV M=1982 MeV
The energy and angular distributions of the photons from the decay of SNDs M=1904 MeV M=1926 MeV M=1942 MeV M=1982 MeV
gd→p- D(1,1-) , (b,c,d) for M=1904, 1942, 2000 MeV gd→p- D(1,1+ )
gd→p+ D(1,1-) , (b,c,d) for M=1904, 1942, 2000 MeV gd→p+ D(1,1+ )
GEANT simulation of p and n mass spectrum; (a) – without an influence of the detectors. (a) (b) (c)
d0 + pnMAMI (Preliminary) V. Kashevarov, 8th Crystal Ball@MAMI Collaboration Meeting, Glasgo, March 27-29, 2006 MM(,0) – md (MeV) Red lines are SND peak positions from INR experiment
gd→p0 D(1,1+) , (b,c,d) for M=1904, 1942, 2000 MeV gd→p0 D(1,1-)
The Two Arm Mass Spectrometer (TAMS). S0, S1, S2, and S3 are start detectors; F0, F1, F2, and F3 are stop DE detectors; D0 is a BGO detector; D1, D2, and D3 are full absorption E detectors.
(a) – 33o, (b) – 35o , (c) – 37o
A. Cichocki, PhD (2003) B. Norum et al. (LEGS) Eg=210-340 MeV a= 90o Pg=99% s=25-14 nb
A.Cichocki, PhD (2003) B. Norum et al. (LEGS) Eg=210-340 MeV a=90 Pg= 99% s=25 -14nb