770 likes | 782 Views
Object Orie’d Data Analysis, Last Time. Kernel Embedding Use linear methods in a non-linear way Support Vector Machines Completely Non-Gaussian Classification Distance Weighted Discrimination HDLSS Improvement of SVM Used in microarray data combination Face Data, Male vs. Female.
E N D
Object Orie’d Data Analysis, Last Time • Kernel Embedding • Use linear methods in a non-linear way • Support Vector Machines • Completely Non-Gaussian Classification • Distance Weighted Discrimination • HDLSS Improvement of SVM • Used in microarray data combination • Face Data, Male vs. Female
Support Vector Machines Forgotten last time, Important Extension: Multi-Class SVMs Hsu & Lin (2002) Lee, Lin, & Wahba (2002) • Defined for “implicit” version • “Direction Based” variation???
Distance Weighted Discrim’n 2=d Visualization: Pushes Plane Away From Data All Points Have Some Influence
Distance Weighted Discrim’n Maximal Data Piling
HDLSS Discrim’n Simulations Main idea: Comparison of • SVM (Support Vector Machine) • DWD (Distance Weighted Discrimination) • MD (Mean Difference, a.k.a. Centroid) Linear versions, across dimensions
HDLSS Discrim’n Simulations Overall Approach: • Study different known phenomena • Spherical Gaussians • Outliers • Polynomial Embedding • Common Sample Sizes • But wide range of dimensions
HDLSS Discrim’n Simulations Spherical Gaussians:
HDLSS Discrim’n Simulations Spherical Gaussians: • Same setup as before • Means shifted in dim 1 only, • All methods pretty good • Harder problem for higher dimension • SVM noticeably worse • MD best (Likelihood method) • DWD very close to MS • Methods converge for higher dimension??
HDLSS Discrim’n Simulations Outlier Mixture:
HDLSS Discrim’n Simulations Outlier Mixture: 80% dim. 1 , other dims 0 20% dim. 1 ±100, dim. 2 ±500, others 0 • MD is a disaster, driven by outliers • SVM & DWD are both very robust • SVM is best • DWD very close to SVM (insig’t difference) • Methods converge for higher dimension?? Ignore RLR (a mistake)
HDLSS Discrim’n Simulations Wobble Mixture:
HDLSS Discrim’n Simulations Wobble Mixture: 80% dim. 1 , other dims 0 20% dim. 1 ±0.1, rand dim ±100, others 0 • MD still very bad, driven by outliers • SVM & DWD are both very robust • SVM loses (affected by margin push) • DWD slightly better (by w’ted influence) • Methods converge for higher dimension?? Ignore RLR (a mistake)
HDLSS Discrim’n Simulations Nested Spheres:
HDLSS Discrim’n Simulations Nested Spheres: 1st d/2 dim’s, Gaussian with var 1 or C 2nd d/2 dim’s, the squares of the 1st dim’s (as for 2nd degree polynomial embedding) • Each method best somewhere • MD best in highest d (data non-Gaussian) • Methods not comparable (realistic) • Methods converge for higher dimension?? • HDLSS space is a strange place Ignore RLR (a mistake)
HDLSS Discrim’n Simulations Conclusions: • Everything (sensible) is best sometimes • DWD often very near best • MD weak beyond Gaussian Caution about simulations (and examples): • Very easy to cherry pick best ones • Good practice in Machine Learning • “Ignore method proposed, but read paper for useful comparison of others”
HDLSS Discrim’n Simulations Caution: There are additional players E.g. Regularized Logistic Regression looks also very competitive Interesting Phenomenon: All methods come together in very high dimensions???
HDLSS Asymptotics: Simple Paradoxes, I • For dim’al Standard Normal dist’n: • Euclidean Distance to Origin (as ): • - Data lie roughly on surface of sphere of radius • - Yet origin is point of highest density??? • - Paradox resolved by: • density w. r. t. Lebesgue Measure
HDLSS Asymptotics: Simple Paradoxes, II • For dim’al Standard Normal dist’n: • indep. of • Euclidean Dist. between and (as ): • Distance tends to non-random constant: • Can extend to • Where do they all go??? • (we can only perceive 3 dim’ns)
HDLSS Asymptotics: Simple Paradoxes, III • For dim’al Standard Normal dist’n: • indep. of • High dim’al Angles (as ): • - Everything is orthogonal??? • - Where do they all go??? • (again our perceptual limitations) • - Again 1st order structure is non-random
HDLSS Asy’s: Geometrical Representation, I • Assume , let • Study Subspace Generated by Data • Hyperplane through 0, of dimension • Points are “nearly equidistant to 0”, & dist • Within plane, can “rotate towards Unit Simplex” • All Gaussian data sets are“near Unit Simplex Vertices”!!! • “Randomness” appears only in rotation of simplex Hall, Marron & Neeman (2005)
HDLSS Asy’s: Geometrical Representation, II • Assume , let • Study Hyperplane Generated by Data • dimensional hyperplane • Points are pairwise equidistant, dist • Points lie at vertices of “regular hedron” • Again “randomness in data” is only in rotation • Surprisingly rigid structure in data?
HDLSS Asy’s: Geometrical Representation, III • Simulation View: shows “rigidity after rotation”
HDLSS Asy’s: Geometrical Representation, III • Straightforward Generalizations: • non-Gaussian data: only need moments • non-independent: use “mixing conditions” • Mild Eigenvalue condition on Theoretical Cov. • (with J. Ahn, K. Muller & Y. Chi) • All based on simple “Laws of Large Numbers”
HDLSS Asy’s: Geometrical Representation, IV • Explanation of Observed (Simulation) Behavior: • “everything similar for very high d ” • 2 popn’s are 2 simplices (i.e. regular n-hedrons) • All are same distance from the other class • i.e. everything is a support vector • i.e. all sensible directions show “data piling” • so “sensible methods are all nearly the same” • Including 1 - NN
HDLSS Asy’s: Geometrical Representation, V • Further Consequences of Geometric Representation • 1. Inefficiency of DWD for uneven sample size • (motivates weighted version, work in progress) • 2. DWD more stable than SVM • (based on deeper limiting distributions) • (reflects intuitive idea feeling sampling variation) • (something like mean vs. median) • 3. 1-NN rule inefficiency is quantified.
The Future of Geometrical Representation? • HDLSS version of “optimality” results? • “Contiguity” approach? Params depend on d? • Rates of Convergence? • Improvements of DWD? • (e.g. other functions of distance than inverse) • It is still early days …
NCI 60 Data • Recall from Sept. 6 & 8 • NCI 60 Cell Lines • Interesting benchmark, since same cells • Data Web available: • http://discover.nci.nih.gov/datasetsNature2000.jsp • Both cDNA and Affymetrix Platforms
NCI 60: Fully Adjusted Data, Melanoma Cluster BREAST.MDAMB435 BREAST.MDN MELAN.MALME3M MELAN.SKMEL2 MELAN.SKMEL5 MELAN.SKMEL28 MELAN.M14 MELAN.UACC62 MELAN.UACC257
NCI 60: Fully Adjusted Data, Leukemia Cluster LEUK.CCRFCEM LEUK.K562 LEUK.MOLT4 LEUK.HL60 LEUK.RPMI8266 LEUK.SR
Real Clusters in NCI 60 Data? • From Sept. 8: Simple Visual Approach: • Randomly relabel data (Cancer Types) • Recompute DWD dir’ns & visualization • Get heuristic impression from this • Some types appeared signif’ly different • Others did not • Deeper Approach: • Formal Hypothesis Testing
HDLSS Hypothesis Testing • Approach: DiProPerm Test • Direction – Projection – Permutation • Ideas: • Find an appropriate Direction vector • Project data into that 1-d subspace • Construct a 1-d test statistic • Analyze significance by Permutation
HDLSS Hypothesis Testing – DiProPerm test • DiProPerm Test • Context: • Given 2 sub-populations, X & Y • Are they from the same distribution? • Or significantly different? • H0: LX = LY vs. H1: LX≠LY
HDLSS Hypothesis Testing – DiProPerm test • Reasonable Direction vectors: • Mean Difference • SVM • Maximal Data Piling • DWD (used in the following) • Any good discrimination direction…
HDLSS Hypothesis Testing – DiProPerm test • Reasonable Projected 1-d statistics: • Two sample t-test (used here) • Chi-square test for different variances • Kolmogorov - Smirnov • Any good distributional test…
HDLSS Hypothesis Testing – DiProPerm test • DiProPerm Test Steps: • For original data: • Find Direction vector • Project Data, Compute True Test Statistic • For (many) random relabellings of data: • Find Direction vector • Project Data, Compute Perm’d Test Stat • Compare: • True Stat among population of Perm’d Stat’s • Quantile gives p-value
HDLSS Hypothesis Testing – DiProPerm test • Remarks: • Generally can’t use standard null dist’ns… • e.g. Students t-table, for t-statistic • Because Direction and Projection give nonstandard context • I.e. violate traditional assumptions • E.g. DWD finds separating directions • Giving completely invalid test • This motivates Permutation approach
HDLSS Hypothesis Testing – DiProPerm test • Many Open Questions on DiProPerm Test: • Which Direction is “Best”? • Which 1-d Projected test statistic? • Permutation vs. altern’es (bootstrap?)??? • How do these interact? • What are asymptotic properties?
Independent Component Analysis Idea: Find dir’ns that maximize indepen’ce Motivating Context: Signal Processing Blind Source Separation References: • Cardoso (1989) • Cardoso & Souloumiac (1993) • Lee (1998) • Hyvärinen and Oja (1999) • Hyvärinen, Karhunen and Oja (2001)
Independent Component Analysis ICA, motivating example: Cocktail party problem Hear several simultaneous conversations would like to “separate them” Model for “conversations”: time series: and
Independent Component Analysis Cocktail Party Problem