1 / 58

CPSC 388 – Compiler Design and Construction

CPSC 388 – Compiler Design and Construction. Code Generation. Code Generation. Global Variables Functions (entry and exit) Statements Expressions Assume only scalar variables, no arrays (you figure out arrays) Generate MIPS assembly code for Spim http://pages.cs.wisc.edu/~larus/spim.html.

Download Presentation

CPSC 388 – Compiler Design and Construction

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. CPSC 388 – Compiler Design and Construction Code Generation

  2. Code Generation • Global Variables • Functions (entry and exit) • Statements • Expressions • Assume only scalar variables, no arrays (you figure out arrays) • Generate MIPS assembly code for Spim • http://pages.cs.wisc.edu/~larus/spim.html

  3. Spim Interpreter spim –file <name> • <name> is the name file containing MIPS assembly code • Program will run, giving output and errors to screen • Also has graphical interface

  4. Some Spim Registers

  5. Helps for Generating Assembly Code • Constants Used SP, FP, RA, V0, A0, T0, T1, TRUE, FALSE • Methods Used generate(opcode, arg1, arg2, arg3) generateIndexed(opcode,R1,R2,offset) genPush(R1) genPop(R1) String nextLabel() genLabel(label)

  6. Global Variables • For each global variable, v: .data .align 2 # align on word boundary _v: .space N • N is the size of the variable in bytes • int: 4 bytes • arrays: 4*(size of array)

  7. Global Variable Example • Give source code int x; int y[10]; • Generate code .data .align 2 _x: .space 4 .data .align 2 _y: .space 40

  8. Code Generation for Functions • For each Function • Function preamble • Function entry (setup AR) • Function body (function’s statements) • Function exit (restore stack, return to caller)

  9. Function Preamble • For the main function generate: .text .globl main main: • All other functions: .text _<fName>: • Where <fname> is the function name

  10. Function Entry <- SP Space for Local vars New AR Control link return add <- SP parameters parameters <- FP Caller’s AR Caller’s AR <- FP

  11. Function Entry Steps • Push RA sw $ra, 0($sp) subu $sp, $sp, 4 • Push CL sw $fp, 0($sp) subu $sp, $sp, 4 • Set FP addu $fp, $sp, <size of params +8> • Push space for local vars subu $sp, $sp, <size of locals in bytes>

  12. Function Body • No need for code from DeclListNode • Call codeGen() for statement nodes in StmtListNode FnBodyNode DeclListNode StmtListNode

  13. Function Exit • Pop AR • Jump to RA field lw $ra, -<paramsize>($fp) move $t0, $fp lw $fp, -<paramsize+4>($fp) move $sp, $t0 jr $ra <- SP Space for Local vars New AR Control link return add parameters <- FP Caller’s AR

  14. Function Returns • Return statement • End of function • Two ways to handle this • Generate return code once and have return statements jump to this code (op code is ‘b’ for branch) • Generate return code for each return statement and end of function

  15. Return Statement’s value • Return statements can return a a value from an ExpNode • ExpNodes will push values onto the stack • Return statement should pop the top of stack and place return value in register V0 before the rest of return code

  16. Statements • Write a different codeGen() method for each kind of statement in AST • Hard to debug assembly code • Alternate method: • Write codeGen() for the WriteIntStmtNode and WriteStrStmtNode classes first (maybe one method) • Test codeGen() for other kinds of statements and expressions by writing a c- program that computes and prints a value.

  17. Write Statement • Call codeGen for expression being printed • Leaves value on top of stack (if int) • Leaves address on top of stack (if String) • Pop top of stack into A0 (register used for output) • Set register V0 to • 1 of int • 4 if String • Generate: syscall

  18. Write Statement Example myExp.codeGen(); genPop(A0); if ( type is int) generate(“li”,V0,1); else if (type is String) generate(“li”,V0,4); generate(“syscall”);

  19. If Statement IfStmtNode Two Methods for Generating code • Numeric Method • Control-Flow Method ExpNode DeclListNode StmtListNode

  20. Numeric Method for If Statements • Evaluate the condition, leave value on stack • Pop top of stack into register T0 • Jump to FalseLabel if T0==FALSE • Code for statement list • FalseLabel: Note: Every Label in assembly code must be unique! I’m Using FalseLabel but the actual label is generated using genLabel()

  21. You Try It • Write the actual code needed for IfStmtNode • What is the form for IfElseStmtNode? • What is the form for WhileStmtNode?

  22. Return Stmt ReturnStmtNode • Call codeGen() for expNode child(leaves result value on stack) • Pop value off stack into V0 • Generate code for actual return • Pop AR • Jump to address in RA ReturnStmtNode ExpNode

  23. Read Statement ReadStmtNode • Code: li $v0, 5 syscall • Loads special value 5 into register V0, then does syscall. • 5 tells syscall to read in an integer and store it back in V0 • Need to write code to copy value from V0 back into address represented by ExpNode ExpNode

  24. ReadStmtNode Examples int x; int *p; int **q; *q=p=&x; scanf(“%d”,&x); scanf(“%d”,p); scanf(“%d”,*q); • All three calls to scanf read in a value into variable x. The value of the expression is the address of x. • To store value into address do: • Generate code to compute value of expression (value is pushed onto stack) • Pop the value into T0 • Store from V0 to address in T0

  25. ReadStmtNode Example generate(“li”,V0,5); generate(“syscall”); myExp.codeGen(); genPop(T0); generateIndexed(“sw”,V0,T0,0);

  26. Identifiers in Code Generation • Function call (id is name of function) • Expressions (can be just a name (id) or an id can be one of the operands) • Assignment statements (id of left-hand side) Need to jump-and-link to instruction using the name of function Generate code to fetch current value and push onto stack Generate code to fetch the address of variable and push address onto stack

  27. IdNode • Needs several methods genJumpAndLink() generate jump and link code for given IdNode codeGen() pushes value of IdNode expression onto stack genAddr() pushes address of IdNode onto stack

  28. genJumpAndLink() for IdNode • simply generate a jump-and-link instruction (with opcode jal) using label as target of the jump. • If the called function is "main", the label is just "main". For all other functions, the label is of the form: _<functionName>

  29. codeGen() for IdNode • copy the value of the global / local variable into a register (e.g., T0), then push the value onto the stack • Different for local or global variablesExamples: lw $t0 _g // load global g into T0 lw $t0 -4($fp) // load local into T0 • How do you tell if variable is local or global? – Using Symbol Table

  30. genAddr() for IdNode • load the address of the identifier into a register then push onto the stack • Uses opcode for loading address la rather than loading values lw • Different for locals or globalsExamples: la $t0, _g // global la $t0, -8($fp) // local

  31. AssignStmtNode AssignStmtNode • Push the address of the left-hand-side expression onto the stack. • Evaluate the right-hand-side expression, leaving the value on the stack. • Store the top-of-stack value into the second-from-the top address. ExpNode ExpNode

  32. Expression Node codeGen • Always generate code to leave value of expression on top of stack • Literals • IntLitNode, StrLitNode • Function Call • Non short-circuited operators • Short-circuited operators

  33. IntLitNode • generate code to push the literal value onto the stack • Generated code should look like: li $t0, <value> # load value into T0 sw $t0, ($sp) # push onto stack subu $sp, $sp, 4

  34. StrLitNode • Store string literal in data area • Push address of string onto stack • Two string lits should be equal if they contain the same characters • This means store only a single instance of a string literal no matter how often it appears in user code

  35. Storing String Literals • Code to store a string literal in data area .data <label>: .asciiz <string value> • <label> needs to be a new label; e.g., returned by a call to nextLabel. • <string value> needs to be a string in quotes. You should be storing string literals that way, so just write out the value of the string literal, quotes and all.

  36. Storing Strings Once • To avoid storing the same string literal value more than once, keep a hashtable in which the keys are the string literals, and the associated information is the static-data-area label. • When you process a string literal, look it up in the hashtable: if it is there, use its associated label; otherwise, generate code to store it in the static data area, and add it to the hashtable.

  37. Pushing StrLitNodes onto stack • Generated Code: .text la $t0, <label> #load addr into $t0 sw $t0, ($sp) #push onto stack subu $sp, $sp, 4

  38. CallExpNode • Since the codeGen method for an expression generates code to evaluate the expression, leaving the value on the stack, all we need to do for step 1 is call the codeGen method of the ExpListNode (which will in turn call the codeGen methods of each ExpNode in the list). For step 2, we just call the genJumpAndLink method of the IdNode. For step 3, we just call genPush(V0). CallExpNode • Code Should: • Evaluate each actual parameter, pushing the values onto the stack; • Jump and link (jump to the called function, leaving the return address in the RA register). • Push the returned value (which will be in register V0) onto the stack. IdNode ExpListNode

  39. Also CallStmtNode • CallExpNode pushes value onto stack (may be void, i.e. garbage from V0) • CallStmtNode MUST pop value off stack CallStmtNode CallExpNode IdNode ExpListNode

  40. Non-Short Circuited ExpNodes • Plus, Minus, …, Not, Less, Equals,… • All do Same basic sequence of tasks • Call each child's codeGen method to generate code that will evaluate the operand(s), leaving the value(s) on the stack. • Generate code to pop the operand value(s) off the stack into register(s) (e.g., T0 and T1). Remember that if there are two operands, the right one will be on the top of the stack. • Generate code to perform the operation (see Spim documentation for a list of opcodes). • Generate code to push the result onto the stack.

  41. Note on SPIM op-codes • The NOT opcode is a bit-wise note (flips bits), this won’t work for the Not boolean operations • Suggest using seq opcode Seq Rdest, Rsrc1, Src2

  42. Example AddExpNode public void codeGen() { // step 1: evaluate both operands myExp1.codeGen(); myExp2.codeGen(); // step 2: pop values in T0 and T1 genPop(T1); genPop(T0); // step 3: do the addition (T0 = T0 + T1) generate("add", T0, T0, T1); // step 4: push result genPush(T0) } AddExpNode ExpNode ExpNode

  43. Short-Circuited Operators • AndNode and OrNode • Short-Circuit means the right operand is evaluated ONLY if it is needed to be evaluated • Example: • (J != 0) && (I/J > Epsilon)

  44. AndNode Procedure Evaluate left operand If left operand is true then Evaluate right operand Expression value is value of right operand Else Expression value is false

  45. OrNode Procedure Evaluate left operand If left operand is false evaluate right operand expression is value of right operand Else expression is true

  46. Short-Circuit Nodes • Need to do jump depending on values of sub-expressions • Look at if-node code for example of this

  47. You Try It • Write code for AndExpNode

  48. If Statement IfStmtNode Two Methods for Generating code • Numeric Method • Evaluate condition, pop off stack, jump on particular value • Control-Flow Method • Evaluate condition and jump to TrueLabel on true or FalseLabel on false (i.e. ALWAYS do a jump) • Requires a new method for Expression Nodes (i.e. don’t put value on the stack, instead do jump) • Call New method genJumpCode(LabelTrue,LabelFalse) ExpNode DeclListNode StmtListNode

  49. codeGen for IfStmtNode (control-flow method) public void codeGen() { String trueLab = nextLabel(); String doneLab = nextLab(); myExp.genJumpCode(trueLab, doneLab); genLabel(trueLab); myStmtList.codeGen(); genLabel(doneLab); }

  50. genJumpCode() for IdNode • Old way lw $t0, <var’s addr> push $t0 • New way lw $t0, <var’s addr> beq $t0, FALSE, falseLab b trueLab

More Related