240 likes | 260 Views
Transcriptome atlases of the craniofacial sutures. Harm van Bakel, PhD. Suture development. Osteogenic fronts - proliferation and differentiation of preosteoblasts Suture mesenchyme - separates osteogenic fronts; later a niche for osteoblast stem cells
E N D
Transcriptome atlases of thecraniofacial sutures Harm van Bakel, PhD
Suture development • Osteogenic fronts - proliferation and differentiation of preosteoblasts • Suture mesenchyme - separates osteogenic fronts; later a niche for osteoblast stem cells • Morphology varies between sutures, e.g. end-to-end vs. overlapping Zhao et al., 2015
Differential gene expression and suture development Coronal Suture p f Apert syndrome Fgfr2+/S252W Mathijssen et al., 1996 P0 Mouse Human Mouse Human Holmes et al., 2009 9 months P0 f p Saethre-Chotzen syndrome Twist1+/- 1 Johnson et al., 2000 El Ghouzzi et al., 1997 Comprehensive expression profiling needed to understand suture biology
11 Sutures – Multiple ages for WT and craniosynostosisgenotypes Chris Percival
Laser capture microdissection of murine suture regions Frontal Suture
WT suture expression profiles Frontal 285 WT profiles 285 WT profiles
Fgfr2+/S252W and Twist1+/- suture expression profiles Frontal 350 mutant profiles → 635 total
Facebase bulk RNA-Seq datasets Frontal Coronal Internasal • 7 suture types • E16.5 and E18.5 for WT, Fgfr2 or Twist1 mutants • ~340 RNA-Seq libraries Interpremaxillary Intermaxillary Interpalatine Maxillary-palatine >7,000 differentially expressed genes across suture regions, development, and mutants 4 suture types, 18 individual sutures, 200 RNA-Seq profiles
Co-expression network analysis Network module WT Frontal suture mesenchyme
Network module properties in frontal suture mesenchyme Co-expression network modules → Osteogenic
Module with genes encoding extracellular space proteins DS splicing Increased at E16.5 Increased at E18.5 Frontal suture mesenchyme
Differential splicing analysis – coronal suture Overview of local splicing events Alternative splicing in coronal suture (FDR 0.01) Exon skip Mutually exclusive exons Alternative 3’ or 5’ Splice sites (A3/5SS) Alternative promoter Alternative 3’ exon
Alternate splicing of Postn, Plod2, and Runx2 Postn Exon 17, increased skip in FR Fasciclin domain Plod2 Exon 14, increased skip in FR Nucleotide-diphospho-sugar transferase Runx2 Exon 8, increased skip in FR Runt-relatedTF domain Reference transcripts Exon skip Protein domain
Dissecting suture cell populations osteogenic front osteogenic front Zhao et al., 2015 Arboleya et al. 2013
Suture subpopulations in osteogenic fronts osteogenic front osteogenic front Zhao et al., 2015 WT E18.5 Immunohistochemistry: RUNX2,BCL11B Holmes et al., 2015
Single-cell sequencing of 4 WT sutures at 3 ages • WT Sutures: • Coronal • Lambdoid • Frontal • Sagittal Profiled Sagittal Suture • E18.5 (as in Atlases, active formation) • P10 (skull expansion, frontal suture fusion imminent) • P28 (post-expansion, mature suture maintenance) Zimmerman et al., 1998
10X genomics chromium single-cell RNA-Seq Cells + reagents + oil Library synthesis Single cell Functionalized gel bead RT reagents in solution Partitioning oil (Courtesy of Robert Sebra, Icahn School of Medicine at Mount Sinai)
Cell types in the P10 lambdoid suture Cell-type specific expression Cell type clustering Chondrocytes Pericytes Capillary endothelial cells Osteoclasts B cells T cells Macrophages (C1q+) Neutrophils Dendritic cells Mesenchyme Macrophages Osteoblasts
Cell type composition differs between sutures and age CE18 – Coronal suture E18 CP10 – Coronal suture P10 LE18 – Lambdoid suture E18 LP10 – Lambdoid suture P10
Cell type composition differs between sutures and age CE18 – Coronal suture E18 CP10 – Coronal suture P10 LE18 – Lambdoid suture E18 LP10 – Lambdoid suture P10 Excluding cartilage cells
Lineage profiling of P10 lambdoid suture mesenchyme Mesenchymal genes Osteoblast genes Mesenchyme Osteoblast Mesenchymal cell types Top-5 genes See poster by Ana Sylvia Gonzalez-Reiche
Using single-cell data to dissect LCM bulk RNA-Seq data Co-expression network modules → Osteogenic
Acknowledgements Icahn School of Medicine at Mount Sinai Ethylin Wang Jabs Harm van Bakel Greg Holmes Ana Sylvia Gonzalez-Reiche Joshua Rivera Divya Kriti Na Lu Bhavana Shewale Bin Zhang Xianxiao Zhou Dalila Pinto Michael Donovan Cincinnati Children’s Medical Center Steven Potter NIH/NIDCR 5U01 DE024448