250 likes | 422 Views
Plasma Physics: A short overview. Wim Goedheer & Hugo de Blank FOM-Instituut voor Plasmafysica Rijnhuizen Nieuwegein (www.rijnhuizen.nl) E-mail: W.J.Goedheer@rijnhuizen.nl H.J.deBlank@rijnhuizen.nl Course material can be found at: (http://www.rijnhuizen.nl)(onderzoek)
E N D
Plasma Physics: A short overview Wim Goedheer & Hugo de Blank FOM-Instituut voor Plasmafysica Rijnhuizen Nieuwegein (www.rijnhuizen.nl) E-mail: W.J.Goedheer@rijnhuizen.nl H.J.deBlank@rijnhuizen.nl Course material can be found at: (http://www.rijnhuizen.nl)(onderzoek) (computational plasma physics) (plasma physics course) NS-CP430M-2009/2010
What is a plasma?- “fourth state” of matter • Needed: heating of free electrons • DC or AC (waves) electric fields • Shock waves • Injection of fast particles • …………. Solid melting fluid evaporation Gas Increasing temperature ionization Plasma A + e A+ + 2e AB + e A+ + B + 2e AB+ + 2e Also reverse reactions: Chemical (non)equilibrium NS-CP430M-2009/2010
Where do we find plasma 1. Astrophysical objects The sun (SOHO @ 304 Å) Orion nebula (HUBBLE) NS-CP430M-2009/2010
Where do we find plasma 2. In the atmosphere Lightning http://www.piedmontamateurastronomers.com Sprites, elves and blue jets http://www.albany.edu Aurora borealis NS-CP430M-2009/2010 http://www.geo.mtu.edu
Where do we find plasma 3. Man made: a) plasma processing of materials http://www.phys.tue.nl/EPG http://www.etp.phys.tue.nl/ Equipment for plasma etching and deposition of thin layers NS-CP430M-2009/2010
Where do we find plasma 3. Man made: b) Lighting Various types of lamps, operating at high or low pressure NS-CP430M-2009/2010
Where do we find plasma 3. Man made: c) plasma display panel Typical size: 100 mm plasma display panel. [Art]. Retrieved January 31, 2007, from Encyclopædia Britannica Online: http://www.britannica.com/eb/art-67339 NS-CP430M-2009/2010
Where do we find plasma 3. Man made: d) fusion plasmas 2 m A view inside the vacuum vessel of JET, without and with plasma. The light shows recycling zones NS-CP430M-2009/2010
Parameters: density and temperature NS-CP430M-2009/2010
Research at the University of Utrecht: solar cells Plasma deposition of amorphous (a-Si:H) and nanocrystalline (nc-Si:H) thin film solar cells SiH4 + e SiH3 + H + e (dissociation, creation of radicals) 2SiH3 + surface 2Si + 3H2 (Si sticks to surface, H2 desorbs) (some H in material (10%) passivates dangling bonds NS-CP430M-2009/2010
Production of solar cells on flexible foil Helianthos project Collaboration of (a.o.) UU, TU/e, TUDelft, TNO, NUON http://www.novem.nl NS-CP430M-2009/2010
A promising future application: energy from fusion D + T He (3.5 MeV) + n (14.1 MeV) Required: 100-200 million K 2 - 3 x 1020 m-3 Magnetic confinement The Tokamak: a giant transformer Plasma (in vacuumchamber) is secondary winding NS-CP430M-2009/2010
JET: The largest Tokamak in the world (since 1983) Some JET parameters Major radius 2.96m Minor radius 2.10 x 1.25m Pulse duration 60s Toroidal B field 3.45T Plasma current 3 - 7MA NS-CP430M-2009/2010
ITER: The road to new energy: first plasma 2018 Joint project of EU, US, Russia, Japan, India, P.R. China, S.Korea To be built in Cadarache, France Power production: 500 MW 10x input Some ITER parameters Major radius 6.2m Minor radius 3.4 x 2m Pulse duration 400s Toroidal B field 5.3T Plasma current 15MA NS-CP430M-2009/2010
Fusion plasma research at Rijnhuizen • Topics: Electron cyclotron heating and current drive • Diagnostics: Charge exchange spectroscopy • Electron Cyclotron Emission spectroscopy • Tokamak Transport: simulations of discharge behaviour • Collaborations on ASDEX-Upgrade (Garching (D)) and JET (Culham (GB)) • New research programme: Burning plasma in ITER • Control (Instabilities due to fast a particles) • Diagnostics (a particles) • Plasma Surface Interaction and plasma edge instabilities NS-CP430M-2009/2010
Where low and high temperature plasma meet: plasma-surface interaction in fusion devices • Fusion reactions produce helium: must be removed • Needed: controlled cool-down of edge plasma: plasma gas • This is established in a special section: divertor • Harsh conditions: • 1-2x104 K, 1024 ions m-2s-1, 10 MWm-2 • Cannot be reached in present-day • tokamaks • New research line at Rijnhuizen: • MAGNUM-psi NS-CP430M-2009/2010
H plasma with B=0 …+ 1 Tesla B field …+ Ohmic heating Pilot-psi Magnum-psi NS-CP430M-2009/2010
What will this course on plasma physics bring you (I) First part of the course (8 lectures) Basic plasma physics (with emphasis on magnetized plasmas) - properties - particle motion in E and B fields - plasma as a fluid - waves - magneto-hydrodynamics • Ends with midterm examination (open book) Exercises: Mandatory, provide basis for midterm examination The Monday-afternoon timeslot: Will be used if necessary = For explanation / solving problems with exercises = In principle only on demand = Question hour for midterm examination = ……… NS-CP430M-2009/2010
What will this course on plasma physics bring you (II) Second part of the course: Advanced plasma physics - fusion and tokamak physics - plasma chemistry - capita selecta (dusty plasma, plasma-surface interaction ,…) • Exercises - Each item will be accompanied with one or two exercises Excursion to Rijnhuizen (on a Monday afternoon) • Possible choices - To match the material with your main interest (CP, EP, theory, astrophysics) you have a choice regarding the items for the final (oral) examination. A CP package could for instance consist of fusion basics, plasma chemistry, and diagnostics relevant for plasmachemical applications) Packages will be defined later (depend a.o. on capita selecta) NS-CP430M-2009/2010