1 / 27

Graph Terminology

Learn about graph terminology, varieties, motivations, and applications in computer science. Explore different graph types, like directed and undirected, in CSE 373.

mariab
Download Presentation

Graph Terminology

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Graph Terminology CSE 373 Data Structures

  2. Reading • Reading • Goodrich and Tamassia, Chapter 12 CSE 373 AU 04 -- Graph Terminology

  3. What are graphs? • Yes, this is a graph…. • But we are interested in a different kind of “graph” CSE 373 AU 04 -- Graph Terminology

  4. Graphs • Graphs are composed of • Nodes (vertices) • Edges (arcs) node edge CSE 373 AU 04 -- Graph Terminology

  5. Varieties • Nodes • Labeled or unlabeled • Edges • Directed or undirected • Labeled or unlabeled CSE 373 AU 04 -- Graph Terminology

  6. Motivation for Graphs node node • Consider the data structures we have looked at so far… • Linked list: nodes with 1 incoming edge + 1 outgoing edge • Binary trees/heaps: nodes with 1 incoming edge + 2 outgoing edges • B-trees: nodes with 1 incoming edge + multiple outgoing edges Next Next Value Value 94 97 10 3 5 96 99 CSE 373 AU 04 -- Graph Terminology

  7. Motivation for Graphs • How can you generalize these data structures? • Consider data structures for representing the following problems… CSE 373 AU 04 -- Graph Terminology

  8. CSE Course Prerequisites at UW 461 322 373 143 321 326 142 415 410 370 341 413 417 378 421 Nodes = courses Directed edge = prerequisite 401 CSE 373 AU 04 -- Graph Terminology

  9. Representing a Maze S S B E E Nodes = rooms Edge = door or passage CSE 373 AU 04 -- Graph Terminology

  10. Representing Electrical Circuits Switch Battery Nodes = battery, switch, resistor, etc. Edges = connections Resistor CSE 373 AU 04 -- Graph Terminology

  11. Program statements x1 x2 x1=q+y*z + - x2=y*z-q Naive: * * q q y*z calculated twice y z x1 x2 common subexpression + - eliminated: q * q Nodes = symbols/operators Edges = relationships y z CSE 373 AU 04 -- Graph Terminology

  12. Precedence S1 a=0; S2 b=1; S3 c=a+1 S4 d=b+a; S5 e=d+1; S6 e=c+d; 6 5 Which statements must execute before S6? S1, S2, S3, S4 4 3 Nodes = statements Edges = precedence requirements 2 1 CSE 373 AU 04 -- Graph Terminology

  13. New York Sydney Information Transmission in a Computer Network 56 Tokyo Seattle 128 Seoul 16 181 30 140 L.A. Nodes = computers Edges = transmission rates CSE 373 AU 04 -- Graph Terminology

  14. Traffic Flow on Highways UW Nodes = cities Edges = # vehicles on connecting highway CSE 373 AU 04 -- Graph Terminology

  15. Graph Definition • A graph is simply a collection of nodes plus edges • Linked lists, trees, and heaps are all special cases of graphs • The nodes are known as vertices (node = “vertex”) • Formal Definition: A graph G is a pair (V, E) where • V is a set of vertices or nodes • E is a set of edges that connect vertices CSE 373 AU 04 -- Graph Terminology

  16. Graph Example • Here is a directed graph G = (V, E) • Each edge is a pair (v1, v2), where v1, v2are vertices in V • V = {A, B, C, D, E, F} E = {(A,B), (A,D), (B,C), (C,D), (C,E), (D,E)} B C A F D E CSE 373 AU 04 -- Graph Terminology

  17. Directed vs Undirected Graphs • If the order of edge pairs (v1, v2) matters, the graph is directed (also called a digraph):(v1, v2)  (v2, v1) • If the order of edge pairs (v1, v2) does not matter, the graph is called an undirected graph: in this case, (v1, v2) = (v2, v1) v2 v1 v2 v1 CSE 373 AU 04 -- Graph Terminology

  18. Undirected Terminology • Two vertices u and v are adjacent in an undirected graph G if {u,v} is an edge in G • edge e = {u,v} is incident with vertex u and vertex v • Some undirected graphs allow “self loops”. These will need slightly different notation, because {u,u} = {u}. Therefore, use [u,v] and [u,u] to represent the edges of such graphs. • The degree of a vertex in an undirected graph is the number of edges incident with it • a self-loop counts twice (both ends count) • denoted with deg(v) CSE 373 AU 04 -- Graph Terminology

  19. Undirected Graph Terminology Edge [A,B] is incidentto A and to B B is adjacent to C and C is adjacent to B B C Self-loop A F D E Degree = 0 Degree = 3 CSE 373 AU 04 -- Graph Terminology

  20. Directed Graph Terminology • Vertex u is adjacentto vertex v in a directed graph G if (u,v) is an edge in G • vertex u is the initial vertex of (u,v) • Vertex v is adjacent from vertex u • vertex v is the terminal (or end) vertex of (u,v) • Degree • in-degree is the number of edges with the vertex as the terminal vertex • out-degree is the number of edges with the vertex as the initial vertex CSE 373 AU 04 -- Graph Terminology

  21. Directed Terminology B adjacent to C and C adjacent from B B C A F D E In-degree = 0 Out-degree = 0 In-degree = 2 Out-degree = 1 CSE 373 AU 04 -- Graph Terminology

  22. Handshaking Theorem • Let G=(V,E) be an undirected graph with |E|=e edges. Then • Every edge contributes +1 to the degree of each of the two vertices it is incident with • number of edges is exactly half the sum of deg(v) • the sum of the deg(v) values must be even Add up the degrees of all vertices. CSE 373 AU 04 -- Graph Terminology

  23. Graph Representations • Space and time are analyzed in terms of: • Number of vertices = |V| and • Number of edges = |E| • There are at least two ways of representing graphs: • The adjacency matrix representation • The adjacency list representation CSE 373 AU 04 -- Graph Terminology

  24. Adjacency Matrix A B C D E F B 0 1 0 1 0 0 A B C D E F C A 1 0 1 0 0 0 F 0 1 0 1 1 0 D E 1 0 1 0 1 0 0 0 1 1 0 0 1 if [v, w] is in E M(v, w) = 0 0 0 0 0 0 0 otherwise Space = |V|2 CSE 373 AU 04 -- Graph Terminology

  25. Adjacency Matrix for a Digraph A B C D E F B 0 1 0 1 0 0 A B C D E F C A 0 0 1 0 0 0 F 0 0 0 1 1 0 D E 0 0 0 0 1 0 0 0 0 0 0 0 1 if (v, w) is in E M(v, w) = 0 0 0 0 0 0 0 otherwise Space = |V|2 CSE 373 AU 04 -- Graph Terminology

  26. Adjacency List Foreach v in V, L(v) = list of w such that [v, w] is in E a b A B C D E F list of neighbors B B D C A A C B D E F D A E E C C D Space = a |V| + 2 b |E| CSE 373 AU 04 -- Graph Terminology

  27. E Adjacency List for a Digraph Foreach v in V, L(v) = list of w such that (v, w) is in E a b A B C D E F B D B C A C D F D E E Space = a |V| + b |E| CSE 373 AU 04 -- Graph Terminology

More Related