1 / 49

Amit Agrawal, Ramesh Raskar and Rama Chellappa Presented by: Ramesh Raskar * University of Maryland, MD, USA

What is the Range of Surface Reconstructions from a Gradient Field?. Amit Agrawal, Ramesh Raskar and Rama Chellappa Presented by: Ramesh Raskar * University of Maryland, MD, USA * Mitsubishi Electric Research Labs (MERL), MA, USA. Source Code: http://www.cfar.umd.edu/~aagrawal. Overview.

marianne
Download Presentation

Amit Agrawal, Ramesh Raskar and Rama Chellappa Presented by: Ramesh Raskar * University of Maryland, MD, USA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. What is the Range of Surface Reconstructions from a Gradient Field? Amit Agrawal, Ramesh Raskar and Rama Chellappa Presented by: Ramesh Raskar* University of Maryland, MD, USA * Mitsubishi Electric Research Labs (MERL), MA, USA Source Code: http://www.cfar.umd.edu/~aagrawal

  2. Overview • Goal: Reconstruct height field from a gradient field • Challenges • Handle noise and outliers • Tradeoff: Preserve features or smooth • Provide knobs for control ? X Gradient Y Gradient Height Field

  3. Choices of Reconstructions Noisy Gradients Height Field Least Sq Solution Robust Solution MSE = 10.81 MSE = 2.26

  4. A Range of Reconstructions 1. Generalized Solution Isotropic Anisotropic Poisson Solver Alpha-Surface M-estimator, Regularization Diffusion Continuous weights Binary weights Affine Transformation Scaling 2. Linear transformation of gradient vectors

  5. Source of Gradients: Image Manipulation 2D Integration Grad X New Grad X Gradient Processing New Grad Y Grad Y Forward Difference Modified Gradients(Non-integrableGradients) Image

  6. X Gradient Y Gradient Source of Gradients: Photometric Stereo Mozart Images under varying illumination (Non-integrable Gradients) 2D Integration Robust Solution MSE=2339.2 MSE=373.72

  7. Gradient Field Integration • Photometric Stereo • Phase unwrapping, Mesh smoothing • Retinex (Horn’74) • HDR compression (Fattal’02) • Poisson image editing (Perez’04) • Poisson matting (Sun’04) • Image fusion (Raskar’04), Multi-flash Camera (Raskar’04) • Image Stitching (Levin’04) • Flash/No-flash (Agrawal’05) • ..

  8. Space of Solutions Non-Integrable Gradient Field Robust solutions Residual Field Least Squares solution Subspace of Integrable Gradient Fields Space of All Gradient Fields

  9. Example Application: Photometric Stereo • How to obtain heights from gradient field? • Preserve features during integration • Handle noise and outliers Z p q ? X Gradient Y Gradient Height Field

  10. Integrability • Gradient field of solution Z should be integrable • Curl(Zx,Zy) (loop integrals) should be zero • Noisy estimated gradient field is non-integrable • Curl(p,q) ≠ 0

  11. Common approaches to handle Integrability • Least Square: • Minimize error between • Estimated gradients (p,q) and Gradients of solution Z • [Horn et al. IJCV’90], [Simchony et al. PAMI’90] • Solution: Poisson equation Divergence Laplacian

  12. Integrability: Reconstruction using Basis Functions • Project non-integrable gradients onto basis functions • Fourier: Frankot-Chellappa (PAMI’88) • Cosine: Georghiades (PAMI’01) • Redundant basis: Kovesi (ICCV’05)

  13. Limitations of Least Squares Approaches • Lack of robustness • Smooth solution rather than feature preserving • Cannot handle outliers Height Field Least Sq Solution Robust Solution MSE = 10.81 MSE = 2.26

  14. Key Ideas • All gradients are not required for integration • Replace gradients by functions of gradients

  15. Approach • Transform input and output gradients • Poisson equation Unknown (Output) Gradients of Height Field Z Estimated(Input) Gradients

  16. Approach • Transform input and output gradients • Poisson equation • New Generalized Equation Functions of Output Gradients Functions of Input Gradients

  17. Approach • Transform input and output gradients • Poisson equation • New Generalized Equation • Knobs for control: functions f1, f2, f3, f4 fi

  18. Least Squares Poisson Solution Isotropic Anisotropic Alpha-Surface M-estimator, Regularization Diffusion Poisson Solver Continuous weights Binary weights Affine Transformation Scaling No Change f1(Zx,Zy) f2(Zx,Zy) f3(p,q) f4(p,q) Poisson solver Zx Zy p q

  19. A Range of Solutions by Transforming Gradients Anisotropic Isotropic Poisson Solver Alpha-Surface M-estimator, Regularization Diffusion Continuous weights Binary weights Affine Transformation Scaling fi Linear Transformation of Gradient Vectors using fi

  20. A Range of Solutions by Transforming Gradients Anisotropic Isotropic Poisson Solver Alpha-Surface M-estimator, Regularization Diffusion Continuous weights Binary weights Affine Transformation Scaling fi f1(Zx,Zy) f2(Zx,Zy) f3(p,q) f4(p,q) Poisson solver Zx Zy p q 1. -surface bxZx byZy bxp byq 2. M-estimators wxZx wyZy wxp wyq 3. Regularization wxZx wyZy p q 4. Diffusion d11Zx+d12Zy d12Zx+d22Zy d11p+d12q d12p+d22q

  21. Anisotropic Isotropic Poisson Solver Alpha-Surface M-estimator, Regularization Diffusion Continuous weights Binary weights Affine Transformation Scaling A Range of Solutions 1. Robust Estimation by ignoring outliers in gradients

  22. 1. -Surface: Binary Weights • Classifying gradients as inliers/outliers • Based on tolerance  • Graph Analogy • 2D grid as a planar graph • Nodes correspond to height values • Edges correspond to gradient values • Given edges compute nodes • [Agrawal et al ICCV 2005]

  23. All Gradients are not required • Minimal set is the spanning tree of the graph • All nodes can be reached via spanning tree • N2 -1 edges in spanning tree for N2 nodes • Dimensionality of gradient field ~= 2N2 • Dimensionality of solution space = N2 - 1

  24.  - Surface • Start with minimum spanning tree • Minimal set of (N2-1) edges • Iterate • Integrate height field using (inlier) edges • Compute gradient edges of the solution • Find inlier edges using tolerance 

  25.  Tolerance d d< d

  26. Choice of   = 0Minimum Spanning TreeUnique SolutionRobust to outliers  >>Overconstrained: All GradientsLeast Squares SolutionSmooth

  27. Anisotropic Isotropic Poisson Solver Alpha-Surface M-estimator, Regularization Diffusion Continuous weights Binary weights Affine Transformation Scaling A Range of Solutions 2. Robust Estimation by weighting gradients

  28. 2. Continuous Weights Solution • M-estimators • Formulated as iterative re-weighted least squares • wx, wy are weights applied to gradients Least squares Huber Influence function

  29. 3. Regularization • Add edge-preserving term using function Ф • Solved iteratively • Estimate weights wx, wy using Z • Update Z using weights • We use

  30. Anisotropic Isotropic Poisson Solver Alpha-Surface M-estimator, Regularization Diffusion Continuous weights Binary weights AffineTransformation Scaling A Range of Solutions 4. Robust Estimation by affine transformation of gradients

  31. 4. Affine transformation of Gradient Field • General Transform of Gradients Vectors • Matrix D2x2 is a field of tensors • Estimated using the input gradient field (p,q) • Similar to edge-preserving diffusion tensor • Image Restoration [Weickert’96]

  32. 4. Affine transformation of Gradient Field • Transformed gradient vectors • Non-iterative, sparse linear system f1(Zx,Zy) f2(Zx,Zy) f3(p,q) f4(p,q) d11Zx+d12Zy d12Zx+d22Zy d11p+d12q d12p+d22q

  33. Mozart: Sharp Features MSE=219.72 MSE=2339.2 MSE=1316.6 MSE=359.12 MSE=806.85 MSE=373.72

  34. Vase: Smooth Object MSE=294.5 MSE=239.6 MSE=22.2 MSE=164.98 MSE=15.14 MSE=2.78

  35. Flowerpot

  36. Isotropic Anisotropic Poisson Solver Alpha-Surface M-estimator, Regularization Diffusion Continuous weights Binary weights Affine Transformation Scaling Generalized Solution using Gradient Vector Transformation Ground Truth Least Squares Feature Preserving

  37. Isotropic Anisotropic Poisson Solver Alpha-Surface M-estimator, Regularization Diffusion Continuous weights Binary weights Affine Transformation Scaling Reconstruction from Gradients • Gradient Field integration as robust estimation • Generalized equation • Isotropic case: Least-square solution • Anisotropic transforms: Range of feature preserving solutions • Knobs for meaningful control • Future Directions • Automatic choice of anisotropic function • Nth order error functions • Using control/seed points information Source Code: http://www.cfar.umd.edu/~aagrawal

  38. Extra Slides

  39. Toy Example

  40. H W Space of All solutions • For a H*W grid, all solutions lie in a subspace of dimension HW-1 • Equations • W-1 loops for each row, H-1 loops for each column • Total number of independent equations • N = (H-1)(W-1) = HW – H –W + 1 • Unknowns • W-1 x gradients in H rows, H-1 y gradients in W columns • Total unknowns • M = (W-1)*H + (H-1)*W = 2HW – H - W

  41. Linear System • Stack all equation to form Ax = b • b contains negative of the curl values • x contains all the residual gradient values (pε,qε) • A is a sparse matrix with each row having 4 non-zero elements • Under-constrained system. A has null space of dimension M-N = H*W-1 • xp = particular solution Axp = b • Xh = homogeneous solution Axh= 0

  42. p q Images X Gradient Y Gradient Example Application: Photometric Stereo • Multiple images, varying illumination • Obtain surface gradient field from images • Lambertian reflectance model

  43. Mozart: Sharp Features MSE=219.72 MSE=2339.2 MSE=1316.6 MSE=359.12 MSE=806.85 MSE=373.72

  44. Vase: Smooth Object MSE=294.5 MSE=239.6 MSE=22.2 MSE=164.98 MSE=15.14 MSE=2.78

  45. Flowerpot

  46. Choice of   = 0Minimum Spanning TreeUnique SolutionRobust to outliers  >>Overconstrained: All GradientsLeast Squares SolutionSmooth Toy Example

  47. Choosing spanning tree • Assign weights to edges based on gradients • Find minimum spanning tree (MST) • Compute  based on variance

  48. Face Input Images Estimated Heights with -tolerance

  49. 3. Regularization • Add edge-preserving term using function Ф • Solved iteratively • Estimate weights wx, wy using Z • Update Z using weights • We use

More Related