1 / 24

TEORIA CINETICA

TEORIA CINETICA. DE GASES. JONATHAN JACOME CEZLY PAOLA. INTRODUCCION.

marlo
Download Presentation

TEORIA CINETICA

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. TEORIA CINETICA DE GASES JONATHAN JACOME CEZLY PAOLA

  2. INTRODUCCION Hay dos teorías microscópicas diferentes pero relacionadas mediante las cuales es posible expresar todas las variables termodinámicas como ciertos promedios de las propiedades moleculares, la teoría cinética y la termodinámica estadística En un principio ambas teorías se desarrollaron sobre la hipótesis de que las leyes de la mecánica, deducidas del comportamiento macroscópico de la materia, son aplicables a partículas como moléculas y electrones.

  3. Equipartición de la energía

  4. Podemos usar este resultado y la ecuación de CV para obtener el calor específico molar a volumen constante: De acuerdo con los resultados anteriores, encontramos que

  5. Calor específico de un gas ideal Cantidad de calor necesario para elevar la temperatura de 1gr. de una sustancia en un grado.(magnitud intensiva). Esta magnitud medida a presión constante se la representa como “Cp”; mientras que medida a volumen constante, toma otro valor y se le representa como “Cv”. Nosotros lo mediremos a presión atmosférica , considerada constante, por lo que le llamaremos Cp.

  6. Calor específico de un gas ideal Se definen dos calores específicos para dos procesos que ocurren con frecuencia: cambios a volumen constante y cambios a presión constante. Definimos los calores específicos asociados a estos procesos mediante las siguientes ecuaciones: Q = nCVDT (volumen constante) Q = nCPDT (presión constante)  Donde CV es el calor específico molar a volumen constante, y CP es el calor específico molar a presión constante.

  7. La energía térmica total U de N moléculas o (n moles) de un gas monoatómico ideal es: Si se transfiere calor al sistema a volumen constante, el trabajo realizado por el sistema es cero. Por lo tanto de la primera ley tenemos que:

  8. La aplicación de la primera ley produce: DU = Q-W= nCPDT -PDV  En este caso la energía añadida al gas o extraída del gas se transfiere en dos formas. Pero el cambio de energía interna correspondiente al proceso if ‘ es igual al cambio en el proceso if debido a que U depende sólo de la temperatura para un gas ideal, y DT es la misma en cada proceso. Además, puesto que PDV = nRDT . La sustitución de este valor para PDV en la ecuación (1) con DU = nCVDT produce nCVDT = nCPDT - nRDT CP – CV = R

  9. Calores específicos

  10. Procesos adiabáticos para un gas ideal Un proceso adiabático reversible es aquel que es suficientemente lento para permitir que el sistema siempre esté cerca del equilibrio, pero rápido comparado con el tiempo que tarda el sistema en intercambiar energía térmica con sus alrededores. Consideremos un cambio infinitesimal en el volumen igual a dV y el cambio infinitesimal en la temperatura como dT. El trabajo efectuado por el gas es PdV. Puesto que la energía interna de un gas ideal depende sólo de la temperatura, el cambio en la energía interna es dU = nCVdT

  11. Variación de la presión en la atmósfera Un gas ideal obedece la relación PV = NkBT. Es conveniente rescribir la ecuación en función del número de partículas por unidad de volumen del gas, nV = N/V. Nuestra meta es determinar cómo cambia nV en nuestra atmósfera. Podemos expresar la ley del gas ideal como P = nVkBT. La presión en la atmósfera disminuye a medida que aumenta la altitud debido a que una capa de aire dada tiene que soportar el peso de toda la atmósfera sobre ella; cuanto mayor sea la altitud, tanto menor será el peso del aire sobre esa capa, y por tanto menor la presión.

  12. Si la masa de una molécula de gas en la capa es m, y hay un total de N moléculas en la capa, entonces el peso de la capa es w = mgN = mgnVV = mgnVAdy. De este modo, vemos que PA – (P + dP) A = mgnVAdy o dP = mgnVdy Debido a que P = nVkBT, y ya que T es constante, vemos que dP = kBTdnV.

  13. Al sustituir esto en la expresión anterior, obtenemos Integrando se obtiene:

  14. Debido a que la presión es P = nkBT, entonces donde P0 = n0kBT. Como nuestra atmósfera contiene diferentes gases, cada uno con diferentes masas moleculares, uno encuentra una concentración más alta de moléculas más pesadas a alturas más bajas, en tanto que las moléculas más ligeras se encuentran a mayores alturas.

  15. Concentración de gases en la atmósfera concentración Altura

  16. Ley de distribución de Boltzmann A medida que examinemos la distribución de partículas en el espacio encontraremos que las partículas se distribuyen por sí solas entre estados de energía diferente de un modo específico el cual depende exponencialmente de la energía, como fue observado por primera vez por Maxwell y ampliado por Boltzmann.

  17. La función exponencial puede interpretarse como una distribución de probabilidad que produce la probabilidad relativa de encontrar una molécula de gas a cierta altura y. De este modo, la distribución de probabilidad p(y) es proporcional a la distribución de densidad n(y). Este concepto nos permite determinar muchas propiedades del gas, como la fracción de moléculas debajo cierta altura o la energía potencial promedio de una molécula. la altura promedio de una molécula en la atmósfera a la temperatura T. La expresión para esa altura promedio es:

  18. Después de efectuar las integraciones indicadas, encontramos: Con un procedimiento similar podemos determinar la energía potencial gravitacional promedio de una molécula de un gas. Debido a que la energía potencial gravitacional de una molécula a una altura y es U = mgy, vemos que U = mg(kBT /mg) = kBT. Esto muestra que la energía potencial gravitacional promedio de una molécula depende solo de la temperatura y no de m o g.

  19. Distribución de velocidades Boltzmann Como la energía potencial gravitacional de una molécula de altura y es U = mgy, podemos expresar la ley de distribución como Esto significa que las moléculas en equilibrio térmico se distribuyen en el espacio con una probabilidad que depende de la energía potencial gravitacional de acuerdo con un factor

  20. Esto puede expresarse en tres dimensiones, pero observando que la energía potencial gravitacional de una partícula depende en general de tres coordenadas. Es decir, U(x,y,z), por lo que la distribución de las partículas en el espacio es: Este tipo de distribución se aplica a cualquier energía que las partículas tengan, como la energía cinética. En general el número de relativo de partículas que tienen energía E es Esta se conoce como ley de distribución de Boltzmann y es importante al describir la mecánica estadística de un gran número de partículas.

  21. Distribución de velocidades moleculares Si N es el número total de moléculas, entonces en número de moléculas con velocidades entre v y v + dv es dN = Nvdv. Este número también es igual al área del rectángulo sombreado en la figura La expresión fundamental que describe la distribución más probable de velocidades de N moléculas de gas es:

  22. Como se indica en la figura, la velocidad promedio, es un poco menor que la velocidad rms. La velocidad más probable, vmp, es la velocidad a la cual la curva de distribución alcanza un máximo. Utilizando la ecuación anterior encontramos que La ley de distribución de Maxwell-Boltzmann muestra que la distribución de velocidades moleculares de un gas depende de la masa así como de la temperatura. A una temperatura dada, la fracción de partículas con velocidades que exceden un valor fijo aumenta a medida que la masa disminuye. Esto explica qué las moléculas más ligeras, como el hidrógeno y el helio, escapan con más facilidad de la atmósfera de la tierra que las moléculas más pesadas, como el nitrógeno y el oxígeno.

  23. Función de distribución para 105 moléculas de N, a 300 K y 900 K. Nv 300 K vRMS vmp vprom 900 K m/s

  24. Ejemplo Una muestra de 0.5 moles de H está a 300 K, encuentre la rapidez promedio, rms y más probable. Encontrar el número de moléculas con velocidad entre 400 y 401 m/s,

More Related