410 likes | 907 Views
Nutrition. 1. Photoautotrophs2. Chemoautotrophs3. Photoheterotrophs4. Chemoheterotrophs. Photoautotrophs. 1. Obtain energy from sunlight2. Use energy to synthesize cellular compounds from CO2 3. Plants, algae, cyanobacteria produce O24. Green sulfur
E N D
1. Metabolism Nutrition
2. Respiration
3. Winogradsky Column
2. Nutrition 1. Photoautotrophs
2. Chemoautotrophs
3. Photoheterotrophs
4. Chemoheterotrophs
3. Photoautotrophs 1. Obtain energy from sunlight
2. Use energy to synthesize cellular compounds from CO2
3. Plants, algae, cyanobacteria produce O2
4. Green sulfur & purple sulfur bacteria anoxygenic
4. Chemoautotrophs 1. Obtain energy from oxidation of inorganic or organic compounds
2. Use energy to synthesize cellular compounds from CO2
3. Sulfur oxidizing & nitrogen oxidizing bacteria
5. Photoheterotrophs 1. Obtain energy from sunlight
2. Use energy to synthesize cellular compounds from organic compounds
3. Purple nonsulfur bacteria, sheathed bacteria
6. Chemoheterotrophs 1. Obtain energy from oxidation of inorganic or organic compounds
2. Use energy to synthesize cellular compounds from organic compounds
3. Animals, fungi, glucose ferment bacteria, sulfur reducing bacteria
7. Respiration 1. External- breathing, movement of O2 into & CO2 out of organism
2. Internal- cellular, exothermic breakdown of molecule to harvest energy
3. Aerobic, anaerobic, & fermentation
8. Aerobic Respiration 1. Complete oxidation of inorganic or organic molecules to harvest their energy
2. Inorganic molecules
3. Organic molecules
9. Inorganic Molecules 1. Hydrogen sulfide oxidizing bacteria-
2H2S + 5O2 g 2SO4-2 + 2H2O + E
2. Ammonium oxidizing bacteria-
2NH4+ + 5O2 g 2NO3- + 4H2O + E
10. Organic Molecules 1. Some bacteria & mitochondria of eukaryotes oxidize glucose to CO2
C6H12O6 + 6O2 g 6CO2 + 6H2O
3. Methylocystis sp & other bacteria oxidize methane to carbon dioxide
CH4 + 2O2 g CO2 + 2H2O
11. Eukaryote Respiration 1. Glycolysis
2. Transition Reaction
3. Citric Acid Cycle
4. Electron Transport System (ETS)
12. Glycolysis 1 1. Occurs in cytoplasm
2. Reactants- C6H12O6 + 2NAD+ + 2ATP + 4ADP + 2PO4-3
3. Products- 2C3H4O3 + 2NADH + 4ATP
4. C3H4O3 to transition rxn, NADH to ETS, ATP to cytoplasm
13. Glycolysis 2 1. Oxygen independent, anaerobic
2. If O2 present, proceeds to mitochondria
3. If O2 absent, proceeds to
fermentation
C6H12O6 + 2ATP g 2C3H4O3 + 4ATP
Pyruvic acid
14. Mitochondrion Description 1. Bilayer membrane with intermembrane space, 1-5mm
2. Cristae- folds of inner membrane project into matrix, ETS
3. Matrix- innermost compartment filled with gel-like fluid, transition rxn & citric acid cycle
15. Mitochondrion Structure
16. Transition Reaction 1. Occurs in mitochondria
2. Reactants- 2C3H4O3 + 2NAD+ + 2CoA
3. Products- 2acetylCoA + 2NADH + 2CO2
4. AcetylCoA to citric acid cycle, NADH to ETS, CO2 to cytoplasm & exits the cell
17. Citric Acid Cycle 1 1. Occurs in mitochondria
2. Reactants- 2acetylCoA + 6NAD+ + 2FAD + 2ADP + PO4-3
3. Products- 6NADH + 2FADH2 + 2ATP + 4CO2
4. NADH + FADH2 to ETS, ATP to cytoplasm, CO2 to cytoplasm & exits the cell
18. Citric Acid Cycle 2
19. ETS 1 1. Occurs in mitochondria
2. Reactants- 10 NADH + 2FADH2 + O2
3. Products- 10 NAD+ + 2FAD + 32 to 34 ATP + H2O
4. NAD+ to glycolysis, transition rxn, or citric acid cycle; FAD to citric acid cycle; ATP + H2O to cytoplasm
20. ETS 2 1. Oxidative phosphorylation
2. Mediated by flavins & cytochromes
3. Overall rxn
FADH2 + NADH + O2 -> 34 ATP + H2O
21. Glucose to ATP
22. Anaerobic Respiration 1. Complete oxidation of organic compounds to CO2 or complete oxidation of inorganic compounds using oxidizers other than oxygen
2. Desulfovibrio sp oxidize acetic acid to CO2 using SO4-2
C2H4O2 + H2SO4 + H2O g 2CO2 + H2S + 3H2O
23. Fermentation 1 1. Incomplete oxidation of organic compound to CO2 & another organic compound
2. Saccharomyces cerevisiae ferment glucose to CO2 & ethanol
C6H12O6 g 2CO2 + 2C2H5OH
24. Fermentation 2 1. Alcoholic Fermentation
2. Lactic Acid Fermentation
3. Both produce no ATP but regenerate NAD+ for glycolysis
25. Alcoholic Fermentation 1. In cytoplasm of plant cells and yeast cells
2. Beer and bread yeast
C3H4O3 + NADH g CO2 + C2H5OH + NAD+
Ethanol
(Ethyl alcohol)
26. Lactic Acid Fermentation 1. In cytoplasm of muscle cells, oxygen debt
2. Sour milk bacteria, yogurt, pasteurization
C3H4O3 + NADH g C3H6O3 + NAD+
Lactic Acid
27. Prokaryote Metabolism 1. More metabolic pathways than other four kingdoms
2. Recycle all mineral elements & organic compounds required for life
3. Metabolic activities of one group allow another group to live
4. M. W. Beijerinck (1851-1931) & S. N. Winogradsky (1856-1953)- relationships between different microbes in mixed communities
28. Winogradsky Column 1. Clear tube, 30cm x 5cm diameter
2. Lower 1/3- lake or river bottom mud plus cellulose, Na2SO4, CaCO3
3. Upper 2/3- water from mud source
4. Cap tube and place in sun or full spectrum light
29. Winogradsky Column
30. Winogradsky Incubation 1. Two to 3 months
2. Added cellulose promotes rapid microbial growth
3. Microbes deplete O2 in sediment & water
4. O2 diffusion from air oxygenates top water level
31. Winogradsky Levels 1. All organisms initially present in $ numbers
2. Different microbes multiply & occupy different levels
3. Levels- specific environmental conditions that support specific organism’s metabolic pathway
32. Fermentative Chemoheterotrophs 1. Glucose fermenting bacteria, Clostridium sp, break dormancy & grow with anaerobic conditions
2. Breakdown cellulose to glucose
3. Ferment glucose to ethanol, acetic acid, succinic acid . . .
33. Anaerobic Chemoautotrophs 1. Sulfur reducing bacteria, Desulfovibrio sp
2. Oxidize glucose fermentation products to CO2 using SO4-2 or S2O3-2
3. SO4-2 & S2O3-2 reduced to H2S
34. Anaerobic Photoautotrophs 1. Green sulfur & purple sulfur bacteria, anaerobic photosynthesis
2. Right below water-sediment interface
3. Synthesize glucose from CO2 & H2S using light energy
6CO2 + 12H2S g C6H12O6 + 6H2O + 12S
35. Green Sulfur Bacteria 1. Lower level, smaller than purple sulfur bacteria
2. Usually deposit sulfur externally
3. Chlorobium sp
36. Purple Sulfur Bacteria 1. Upper level, larger than green sulfur bacteria
2. Deposit sulfur internally
3. Thiocapsa sp
37. Anaerobic Photoheterotrophs 1. Purple nonsulfur bacteria, synthesize cellular compounds from organic acids using light
2. Rhodopseudomonas, Rhodospirillum, & Rhodomicrobium genera
3. Intolerant of # H2S, so found above green & purple sulfur bacteria
4. Intolerant of O2, so $ when cyanobacteria oxygenate water column
38. Aerobic Chemoautotrophs 1. Sulfur oxidizing bacteria
2. Oxidize H2S to SO4-2 for energy
3. Synthesize cellular compounds from CO2
4. Soil aerobic chemoautotrophs oxidize NH4+ to NO3-
39. Aerobic Photoautotrophs 1. Cyanobacteria synthesize glucose from CO2 & H2O using light energy
2. Like plants & algae, but no chloroplasts
3. Only oxygen producing bacteria
40. Aerobic Photoheterotrophs 1. Sheathed bacteria synthesize cellular compounds from organic compounds
2. Sheath- rigid tube of protein, polysaccharide, & lipid
3. Fe(OH)3 gives yellow to rusty color
4. Sheath surrounds chain of bacteria, bacterium swim free to form new colonies
41. Return to Lectures Menu