350 likes | 1.12k Views
COLUMNAS DE HORMIGON ARMADO. C002 - COLUMNA INTERNA. C001/03/04 -COLUMNAS DE ESQUINA. C004 - COLUMNA DE BORDE. COLUMNAS DE HORMIGON ARMADO. a) Columnas cortas : la resistencia depende solo de la resistencia de los materiales y de la geometría de la sección transversal.
E N D
C002 - COLUMNA INTERNA C001/03/04 -COLUMNAS DE ESQUINA C004 - COLUMNA DE BORDE COLUMNAS DE HORMIGON ARMADO a) Columnas cortas: la resistencia depende solo de la resistencia de los materiales y de la geometría de la sección transversal. b) Columnas esbeltas: la resistencia puede reducirse en forma significativa por las deflexiones laterales, es decir influyen los efectos de segundo orden y los problemas de inestabilidad del equilibrio.
Condición Reglamentaria Donde: Ag: área bruta de hormigón Ast: área total de armadura • Columnas zunchadas y elementos compuestos • Columnas con estribos COLUMNAS DE HORMIGON ARMADOCOMPRESION AXIAL PURA CIRSOC 201 LIMITACION Adicional para columnas
COMPRESION AXIAL. Procedimiento con As/Ag como datos.Columnas con Estribos.Adapto ecuación de Pn en función de cuantía (As/Ag.)Adopto valor de cuantía.Determino Ag.Determino dimensiones de sección de hormigon.Obtengo el valor de As y diseño armadura longitudinal.Diseño los estribos según 7.2.3 (Möller) o desde 7.10.4 a 7.10.5 inclusive (cirsoc 201). COLUMNAS DE HORMIGON ARMADO • COMPRESION AXIAL. Procedimiento con As/Ag como datos.Columnas Zunchadas.Adapto ecuación de Pn en función de cuantía (As/Ag.)Adopto valor de cuantía.Determino Ag. Determino luego el diámetro de la columna.Obtengo el valor de As y diseño armadura longitudinal.Diseño los zunchos según 10.9.3 – 7.7.1 (cirsoc 201).
COLUMNAS DE HORMIGON ARMADOFLEXOCOMPRESIONRECTA Condición de Resistencia : Ecuaciones de Apoyo para diagramas de interacción Diagrama de interacción Tipo
COLUMNAS DE HORMIGON ARMADOFLEXOCOMPRESIONRECTA • Procedimiento con b y h como datos.Columnas con Estribos.Propongo valor de Ø. (diagramas de interacción)Determino valores adimensionales ( m y n) Determino ρ por interpolación (diagramas en función de g).Verifico coeficiente Ø con las hipotesis de cálculo.Obtengo el valor de As y diseño armadura longitudinal.Diseño los estribos según 7.2.3 (Möller) o desde 7.10.4 a 7.10.5 inclusive (cirsoc 201). Estribos deben verificar el corte (ver Möller pág.114).
COLUMNAS DE HORMIGON ARMADOFLEXOCOMPRESIONRECTA Verifico coeficiente Ø con las hipotesis de cálculo.A) obtengo j luego de iterar con: jc = 0.003 Se repite el proceso hasta encontrar j que genere e=Mu/ Nu
COLUMNAS DE HORMIGON ARMADOFLEXOCOMPRESIONOBLICUA - METODOS APROXIMADOS METODO DE LA CARGA INVERSA *Se calculan ex y ey, función de Su. *Se adopta valor de cuantía rg . *Se calcula Po suponiendo carga centrada *Se calcula Pnxo suponiendo flexión en x-x.se utiliza la ayuda de diagramas de interacción. (tan a=(hy / ey)) *Se calcula Pnyo suponiendo flexión en y-y.se utiliza la ayuda de diagramas de interacción. (tan a=(hx/ex)) *Se aplica ecuación general de la superficie de falla *Se verifica que Pn sea > 0,10 Poy que f Pn sea > Pu
COLUMNAS DE HORMIGON ARMADOFLEXOCOMPRESIONOBLICUA - METODOS APROXIMADOS METODO DEL CONTORNO DE CARGA • Los exponentes 1, 2 dependen de la forma de la columna, de la cuantía y disposición de la armadura, y de las características del acero y hormigón. • En general se utiliza 1 = 2 = que varía entre 1.15 y 1.55 para columnas cuadradas y rectangulares. • DadoPu, Mux, Muy : • Se calcula ex = Muy / Pu , ey = Mux / Pu . • Se estima • Se calcula Pn = Pu / , Mnx = Mux / , Mny = Muy / . • Con Pn y Pney se calcula Mnx0utilizando diagramas de interacción para flexión recta. Similarmente se determina Mny0 a partir de Pny Pnex . • Se verifica que (7.26) resulte 1.0 significando que el diseño es seguro. Si el resultado es > 1.0 la sección falla y hay que rediseñar la sección.
Esbeltez de las columnas: COLUMNAS DE HORMIGON ARMADO Carga Critica de EULER
Esbeltez de las columnas: COLUMNAS DE HORMIGON ARMADO Carga Critica de EULER Tensión Crítica de EULER
Problemas de resistencia con teoría de 1er orden: COLUMNAS DE HORMIGON ARMADO Columnas cortas Problemas de resistencia con teoría de 2do orden: Columnas de esbeltez moderada Columnas de esbeltez elevada Opción de resolución: Método de los momentos amplificados ( cirsoc 201 cap 10 art 10.12 y 10.13) Desplazabilidad de un edificio
Esbeltez de las columnas: COLUMNAS DE HORMIGON ARMADO
Esbeltez de las columnas: COLUMNAS DE HORMIGON ARMADO