300 likes | 440 Views
Excite T406. Acid Diffusion in CARs Exposure latitude Impact on Line Edge Roughness David Van Steenwinckel, Jeroen Lammers, Hans Kwinten (Philips Research Leuven) Peter Leunissen (IMEC). Introduction. Impact of acid diffusion on chemical contrast. 200nm pitch. 100nm pitch.
E N D
Excite T406 • Acid Diffusion in CARs • Exposure latitude • Impact on Line Edge Roughness • David Van Steenwinckel, Jeroen Lammers, Hans Kwinten (Philips Research Leuven) • Peter Leunissen (IMEC)
Introduction Impact of acid diffusion on chemical contrast 200nm pitch 100nm pitch Relative # deprotected Sites (a.u.) Position (nm) Position (nm)
Relation EL - Ld Experiment: 320nm pitch NA=0.75 Dipole s = 0.89/0.6 NILS = 2.3 • Diffusion has major impact on max. EL • Scaling with pitch • Ld = 68nm on 320nm pitch translates to 0.21 Ld /pitch
Relation EL - Ld Experiment: 320nm pitch NA=0.75 Dipole s = 0.89/0.6 NILS = 2.3 • Diffusion has major impact on max. EL • Scaling with pitch • Ld = 68nm on 320nm pitch translates to 0.21 Ld /pitch • EL scaling with NILS
Relation EL - Ld 0.12 EL / NILS
Factors affecting LER 100nm 1:1 lines Shot Noise Contrast
Factors affecting LER 100nm 1:1 lines Shot Noise • Shot noise scaling: • Poisson statistics N = number of acid molecules influencing deprotection statistics
N Photon density Exposure Dose Volume affected by acid molecules Factors affecting LER 100nm 1:1 lines Shot Noise • Shot noise scaling: • Poisson statistics N = number of acid molecules influencing deprotection statistics
(Ld)3 Scaling LER - Ld Relation LER – Ld 100nm 1:1 lines Shot Noise • Shot noise scaling: • Poisson statistics N Volume affected by acid molecules Photon density Exposure Dose
Optical Chemical Relation LER – Ld 100nm 1:1 lines Shot Noise Contrast
Best LER Scaling LER - Ld Relation LER – Ld 100nm 1:1 lines Shot Noise Contrast
Conclusions EL LER Acid Diffusion Length
Conclusions • Acid diffusion is an important resist process parameter to tune crucial lithographic process characteristics • EL was altered by factor of 4 • LER changed by 40% • Scaling of EL and LER with diffusion length was successfully described by two validated formulas • For a given dose, EL and LER cannot be optimized simultaneously • e.g. Optimum diffusion length for LER reduction is one third of the pitch, EL then drops to 40% of best achievable
Acknowledgments • P. Dirksen (Philips Research Leuven) • M. Ercken and N. Vandenbroeck (IMEC) • This work is sponsored through the Excite MEDEA+ T406 project, and the More Moore IST-1-507754-IP project.
Relation LER – Ld MTFdiff = MTFdiff EL / NILS
Number of Pixels Shot Noise Statistics Acid Diffusion Length Introduction Dose R. Brainard et al. Proc. SPIE, 5374, 74 (2004) Resolution Line Edge Roughness
Number of Pixels Shot Noise Statistics Acid Diffusion Length Introduction Dose R. Brainard et al. Proc. SPIE, 5374, 74 (2004) Resolution Chemical Contrast Exposure Latitude Line Edge Roughness
Number of Pixels Shot Noise Statistics Acid Diffusion Length Introduction Dose R. Brainard et al. Proc. SPIE, 5374, 74 (2004) Resolution Chemical Contrast Exposure Latitude Line Edge Roughness
Introduction EL LER Acid Diffusion Length
SB 115°C 110°C 120°C PEB 110°C x x x 115°C x x x 120°C x x x Experimental Setup • ArF resist: GAR8105G1 (FFEM) • Experimental matrix • Acid diffusion lengths characterized using ENZ Theory • P. Dirksen et al., Proc SPIE, 5377, p150 (2004) • D. Van Steenwinckel et al., Proc. SPIE, 5753, paper 32 (2005)
Acid Diffusion Length (Ld) • Ld as characterized with ENZ methodology • Observations: • Large increase in Ld with PEB temperature • Small decrease in Ld with SB temperature Acid Diffusion Length (nm)
Outline EL LER Acid Diffusion Length
Outline EL LER Acid Diffusion Length