1 / 41

Penalaran Logika Fuzzy

Penalaran Logika Fuzzy. Sistem Berbasis Fuzzy Materi 2. Eko Prasetyo Teknik Informatika Universitas Muhammadiyah Gresik 2012. Kasus fuzzy dalam kehidupan sehari-hari. Tinggi badan saya : Andi menilai bahwa tinggi badan saya termasuk tinggi

marty
Download Presentation

Penalaran Logika Fuzzy

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. PenalaranLogika Fuzzy SistemBerbasis Fuzzy Materi 2 Eko Prasetyo TeknikInformatika UniversitasMuhammadiyah Gresik 2012

  2. Kasus fuzzy dalamkehidupansehari-hari • Tinggibadansaya: • Andimenilaibahwatinggibadansayatermasuktinggi • Nina menilaibahwatinggibadansayatermasuksedang • Manajerproduksibertanya pad manajerpergudanganberapastokbarang yang adapadaakhirmingguini, • Kemudianmanajerproduksiakanmenetapkanjumlahbarang yang harusdiproduksiesokhari. • Pelayanrestoranmemberikanpelayanankepadatamu, • Kemudiantamuakanmemberikan tip yang sesuaiatasbaiktidaknyapelayanan yang diberikan • Andamengatakanpadasayaseberapasejukruangan yang andainginkan, • Kemudiansayaakanmengatur setting AC padaruanganini • Ketikaandanaiktaksi, andaberkatapadataksimemintaseberapacepat yang andainginkan, • Kemudiansopirtaksiakanmengaturpijakan gas taksinya.

  3. Black box Logika Fuzzy

  4. KonsepDasar • Logika fuzzy bukanlahlogika yang tidakjelas (kabur), • tetapi logika yang digunakan untuk menggambarkan ketidakjelasan. • Logika fuzzy adalah teori himpunanfuzzy • Himpunan yang mengkalibrasi ketidakjelasan. • Logika fuzzy didasarkan padagagasan bahwa segala sesuatu mempunyainilaiderajat. • Logika Fuzzy merupakanpeningkatan dari logika Boolean yang mengenalkan konsep kebenaran sebagian. • Logika klasik (Crisp Logic) menyatakan bahwa segala hal dapat diekspresikan dalam istilah binary (0 atau 1, hitam atau putih, ya atau tidak) Tidakadanilaidiantaranya • Logika fuzzy menggantikan kebenaran boolean dengan tingkat kebenaran Adanilaidiantarahitamdanputih (abu-abu).

  5. Logika Fuzzy • Alasanpenggunaan: • Mudahdimengerti, konsepmatematisnyasederhana • SangatFleksibel • Memilikitoleransiterhadap data-data yang tidaktepat (kabur) • Mampumemodelkanfungsi-fungsi non-linear yang sangatkompleks. • Dapatmenerapkanpengalamanpakarsecaralangsungtanpaprosespelatihan. • Dapatbekerjasamadenganteknik-teknikkendalisecarakonvensional. • Didasarkanpadabahasaalami • Fuzzy ≠ Probabilitas: • Probabilitasberkaitandenganketidakmenentuandankemungkinan • Logika Fuzzy berkaitandenganambiguitasdanketidakjelasan

  6. AplikasiLogika Fuzzy • Tahun 1990, mesincuciotomatisdiJepangmenggunakanlogika fuzzy. • Menggunakan sensor untukmendeteksikotoranpadapakaian. • Inputnya: tingkatkekotoran, jeniskotorandanbanyaknyacucian. • Outputnya: menentukanputaranputaran yang tepatsecaraotomatis. • Transmisiotomatismobil. • Mampumenghematbensin 12-17% • Duniakedokterandanbiologi • Diagnosis penyakitpasien, penelitiankanker, dsb. • Manajemenpengambilankeputusan • Manajemen basis data untuk query data • Tata letakpabrik yang maksimal • Penentuanjumlahproduksiberdasarkanjumlahstokdanpermintaan. • Klasifikasidanpencocokanpola. • Mengukurkualitas air, peramalancuaca, dsb.

  7. FungsiKeanggotaan • FungsiKeanggotaan (Membership Function) adalahsuatukurva yang menunjukkanpemetaantitik-titik input data (sumbu x) kepadanilaikeanggotaannya (seringjugadisebutderajatkeanggotaan) yang mempunyaiinterval mulai 0 sampai 1. • Menggunakanpendekatanfungsi: • Linear naik • Linear turun • Kurvasegitiga • Kurvatrapesium • Kurva Sigmoid • Kurva Phi • Kurva Beta • Kurva Gauss • Fungsi Linear naikdan Linear turun • Berupasuatugarislurus. • Untuk Linear naik: dimulaidariderajat 0 bergerakkekananmenujukenilai domain yang mempunyaiderajatkeanggotaanlebihtinggi. • Untuk Linear naik: dimulaidariderajat 1 padasisikiribergerakkekananmenujukenilai domain yang mempunyaiderajatkeanggotaanlebihrendah. Linear naik

  8. FungsiKurvatrapesium Padadasarnyaadalahkurvasegitiga, hanyasajaadabeberapatitikditengah yang mempunyainilaikeangotaan 1 Linear turun FungsiKurvasegitiga Merupakangabungangaris linear naikdanturun

  9. FungsiKurva sigmoid • Digunakanuntukmerepresentasikankenaikandanpenurunansecaratidak linear • Untukkurva sigmoid pertumbuhanbergerakdarisisikiri (nilaikeangotaan=0) kesisikanan (nilaikeanggotaan=1) • Untukkurva sigmoid penyusutanbergerakdarisisikiri (nilaikeangotaan=1) kesisikanan (nilaikeanggotaan=0) Kurva sigmoid pertumbuhan Kurva sigmoid penyusutan

  10. FungsiKurva Beta • Bentuknyalonceng (samadengan Phi dan Gauss), tetapilebihrapat. • Menggunakan 2 parameter:  untuktitikpuncaklonceng, dan  untukseparuhdariseparuhbagianlonceng. • Titikinfleksimemberikannilaikeanggotaan = 0.5. • Jika  sangatbesar, makanilaikeanggotaannyabisamenjadi nol.

  11. OperasiHimpunan Fuzzy • Sepertipadahimpunankonvensional, adaoperasihimpunanjugapadahimpunan fuzzy • Hasiloperasi 2 himpunandisebutjugafire strenghtatau–predikat. • Ada 3 operator: • AND (interseksi/irisan), dan OR (union/gabungan), NOT (komplemen) • Operator AND • Berhubungandenganoperasiirisanhimpunan, • Diperolehdenganmengambilnilaikeanggotaanterkecilantarelemenpadahimpunan-himpunan yang bersangkutan. • Misal: operasi AND nilaikeanggotaanhimpunan fuzzy A dan B, AB = min(A[x], B[y]) • Operator OR • Berhubungandenganoperasiunion/gabunganhimpunan, • Diperolehdenganmengambilnilaikeanggotaanterbesarantarelemenpadahimpunan-himpunan yang bersangkutan. • Misal: operasi OR nilaikeanggotaanhimpunan fuzzy A dan B, AB = max(A[x], B[y]) • Operator NOT • Berhubunganoperasikomplemenpadahimpunan. • Misl, operasi NOT padanilaikeanggotaan A[x] menjadi: A[x]c = 1 - A[x]

  12. SistemInferensi Fuzzy METODE TSUKAMOTO

  13. SistemInferensi Fuzzy Metode Tsukamoto • Pertama kali diperkenalkanoleh Tsukamoto. • Setiapkonsekuen (kesimpulan) padasetiapaturan IF-THEN harusdirepresentasikandengansuatuhimpunan fuzzy denganfungsikeanggotaanmonoton. • Hasilnya, output hasilinferensidarisetiapaturandiberikansecarategas (crisp) berdasarkan-predikat, kemudianmenghitungrata-rata terbobot. MetodeSugeno MetodeMamdani

  14. Contoh: metode Tsukamoto • Sebuahperusahaanmakanankalengakanmemproduksimakananjenis ABC. Dari data 1 bulanterakhir, permintaanterbesarhinggamencapai 5000 kemasan/hari, danpermintaanterkecilsampai 1000 kemasan/hari. Persediaanbarangdigudang paling banyaksampai 600 kemasan/hari, dan paling sedikitsampai 100 kemasan/hari. Dengansegalaketerbatasannya, sampaisaatini, perusahaanbarumampumemproduksibarangmaksimal 7000 kemasan/hari, sertademiefisiensimesindan SDM tiapharidiharapkanperusahaanmemproduksi paling tidak 2000 kemasan. • Apabilaprosesproduksiperusahaantersebutmenggunakan 4 aturansebagaiberikut: • Rule 1 • IF permintaan TURUN and persediaan BANYAK THEN produksibarang BERKURANG • Rule 2 • IF permintaan TURUN and persediaan SEDIKIT THEN produksibarang BERKURANG • Rule 3 • IF permintaan NAIK and persediaan BANYAK THEN produksibarang BERTAMBAH • Rule 4 • IF permintaan NAIK and persediaan SEDIKIT THEN produksibarang BERTAMBAH • Berapakemasanmakananjenis ABC yang harusdiproduksi, jikajumlahpermintaansebanyak 3500 kemasan, danpersediaandigudangmasih 300 kemasan ? (Gunakanfungsikeanggotaan LINEAR)

  15. Ada 3 variabel yang digunakan: PERMINTAAN, PERSEDIAAN, dan PRODUKSI PERMINTAAN: 1000 – 5000, x = 3500 PERSEDIAAN: 100 - 600, y = 300 PRODUKSI: 2000 – 7000, z = ? PERMINTAAN, terdiridari 2 himpunan fuzzy: TURUN dan NAIK NilaikeanggotaanuntuknilaiPERMINTAAN = 3500 x = 3500 pmtTURUN[3500] = (5000-3500)/4000 = 0.375 pmtNAIK[3500] = (3500-1000)/4000 = 0.625

  16. PERSEDIAAN, terdiridari 2 himpunan fuzzy: SEDIKIT dan BANYAK y = 300 psdSEDIKIT[300] = (600-300)/500 = 0.6 psdBANYAK[300] = (300-100)/500 = 0.4

  17. PRODUKSI, terdiridari 2 himpunan fuzzy: BERKURANG dan BERTAMBAH Nilai-predikatdan Z darisetiapaturan Rule 1 -predikat1 = pmtTURUN  psdBANYAK = min(pmtTURUN[3500]  psdBANYAK[300]) = min(0.375; 0.4) = 0.375 Dari himpunanproduksibarangBERKURANG, (7000-z)/5000 = 0.375  z1 = 5125 Rule 2 -predikat2 = pmtTURUN  psdSEDIKIT = min(pmtTURUN[3500]  psdSEDIKIT[300]) = min(0.375; 0.6) = 0.375 Dari himpunanproduksibarangBERKURANG, (7000-z)/5000 = 0.375  z2 = 5125 pmtSEDIKIT = 0.6 pmtBANYAK = 0.4 pmtTURUN = 0.375 pmtNAIK = 0.625

  18. Nilai-predikatdan Z darisetiapaturan Rule 3 -predikat3 = pmtNAIK  psdBANYAK = min(pmtNAIK[3500] psdBANYAK[300]) = min(0.625; 0.4) = 0.4 Dari himpunanproduksibarangBERTAMBAH, (z-2000)/5000 = 0.4  z3 = 4000 Rule 4 -predikat4 = pmtNAIK  psdBANYAK = min(pmtNAIK[3500]  psdBANYAK[300]) = min(0.625; 0.6) = 0.6 Dari himpunanproduksibarangBERTAMBAH, (z-2000)/5000 = 0.6  z4 = 5000 Menghitung z akhirdenganmerata-rata semua z berbobot: Jadi, jumlahmakananjenis ABC yang harusdiproduksisebanyak4825 kemasan.

  19. Kasus 1 BagaimanajikajumlahPERMINTAAN = 2500, PERSEDIAAN = 500, berapakemasanmakananjenis ABC yang harusdiproduksi ? Kasus 2 BagaimanajikajumlahPERMINTAAN = 4500, PERSEDIAAN = 150, berapakemasanmakananjenis ABC yang harusdiproduksi ? Kasus 3 BagaimanajikajumlahPERMINTAAN = 5000, PERSEDIAAN = 75, berapakemasanmakananjenis ABC yang harusdiproduksi ? Gunakanmetode TSUKAMOTO

  20. SistemInferensi Fuzzy METODE SUGENO

  21. SistemInferensi Fuzzy Metode Tsukamoto MetodeSugeno • Diperkenalkanoleh Takagi-Sugeno-Kang, tahun 1985. • Bagian output (konsekuen) sistemtidakberupahimpunan fuzzy, melainkankonstanta (ordenol) ataupersamaan linear (ordesatu). • Model SugenoOrdeNol • IF (x1 is A1)  (x2 is A2)  …  (xn is An) THEN z=k • Model SugenoOrdeSatu • IF (x1 is A1)  (x2 is A2)  …  (xn is An) THEN z= p1 * x1 + … + p2 * x2 + q MetodeMamdani

  22. Contoh: metodeSugeno • Sebuahperusahaanmakanankalengakanmemproduksimakananjenis ABC. Dari data 1 bulanterakhir, permintaanterbesarhinggamencapai 5000 kemasan/hari, danpermintaanterkecilsampai 1000 kemasan/hari. Persediaanbarangdigudang paling banyaksampai 600 kemasan/hari, dan paling sedikitsampai 100 kemasan/hari. Dengansegalaketerbatasannya, sampaisaatini, perusahaanbarumampumemproduksibarangmaksimal 7000 kemasan/hari, sertademiefisiensimesindan SDM tiapharidiharapkanperusahaanmemproduksi paling tidak 2000 kemasan. • Apabilaprosesproduksiperusahaantersebutmenggunakan 4 aturansebagaiberikut: • Rule 1 • IF permintaan TURUN and persediaan BANYAK THEN produksibarang = permintaan - persediaan • Rule 2 • IF permintaan TURUN and persediaan SEDIKIT THEN produksibarang = permintaan • Rule 3 • IF permintaan NAIK and persediaan BANYAK THEN produksibarang = permintaan • Rule 4 • IF permintaan NAIK and persediaan SEDIKIT THEN produksibarang = 1.25*permintaan - persediaan • Berapakemasanmakananjenis ABC yang harusdiproduksi, jikajumlahpermintaansebanyak 3500 kemasan, danpersediaandigudangmasih 300 kemasan ? (Gunakanfungsikeanggotaan LINEAR)

  23. Ada 3 variabel yang digunakan: PERMINTAAN, PERSEDIAAN, dan PRODUKSI PERMINTAAN: 1000 – 5000, x = 3500 PERSEDIAAN: 100 - 600, y = 300 PRODUKSI: 2000 – 7000, z = ? PERMINTAAN, terdiridari 2 himpunan fuzzy: TURUN dan NAIK NilaikeanggotaanuntuknilaiPERMINTAAN = 3500 x = 3500 pmtTURUN[4000] = (5000-3500)/4000 = 0.375 pmtNAIK[4000] = (3500-1000)/4000 = 0.625

  24. PERSEDIAAN, terdiridari 2 himpunan fuzzy: SEDIKIT dan BANYAK y = 300 psdSEDIKIT[300] = (600-300)/500 = 0.6 psdBANYAK[300] = (300-100)/500 = 0.4

  25. PRODUKSI, tidakmempunyaihimpunan fuzzy. Nilaipermintaan = 3500 Jumlahpersediaan = 300 Nilai-predikatdan Z darisetiapaturan Rule 3 -predikat3 = pmtNAIK  psdBANYAK = min(pmtNAIK[3500] psdBANYAK[300]) = min(0.625; 0.4) = 0.4 Dari bagiankonsekuen Rule 3 z3 = permintaan = 3500 Rule 1 -predikat1 = pmtTURUN  psdBANYAK = min(pmtTURUN[3500]  psdBANYAK[300]) = min(0.375; 0.4) = 0.375 Dari bagiankonsekuen Rule 1 z1 = permintaan – persediaan = 3500 – 300 = 3200 Rule 2 -predikat2 = pmtTURUN  psdSEDIKIT = min(pmtTURUN[3500]  psdSEDIKIT[300]) = min(0.375; 0.6) = 0.375 Dari bagiankonsekuen Rule 2 z2 = permintaan = 3500 Rule 4 -predikat4 = pmtNAIK  psdSEDIKIT = min(pmtNAIK[3500]  psdSEDIKIT[300]) = min(0.625; 0.6) = 0.6 Dari bagiankonsekuen Rule 2 z2 = 1.25*permintaan - persediaan = 1.25 * 3500 – 300 = 4075 Menghitung z akhirdenganmerata-rata semua z berbobot: Jadi, jumlahmakananjenis ABC yang harusdiproduksisebanyak3633 kemasan.

  26. Kasus 1 BagaimanajikajumlahPERMINTAAN = 2500, PERSEDIAAN = 500, berapakemasanmakananjenis ABC yang harusdiproduksi ? Kasus 2 BagaimanajikajumlahPERMINTAAN = 4500, PERSEDIAAN = 150, berapakemasanmakananjenis ABC yang harusdiproduksi ? Kasus 3 BagaimanajikajumlahPERMINTAAN = 5000, PERSEDIAAN = 75, berapakemasanmakananjenis ABC yang harusdiproduksi ? Gunakanmetode SUGENO

  27. SistemInferensi Fuzzy METODE MAMDANI

  28. MetodeMamdani • DiperkenalkanolehMamdanidanAssilian (1975). • Ada 4 tahapandalaminferensiMamdani (termasukmetode yang lain): • Pembentukanhimpunan fuzzy (fuzzyfication) Variabel input dan output dibagimenjadisatuatulebihhimpunan fuzzy • Penerapanfungsiimplikasi Fungsiimplikasi yang digunakanadalahMIN • Komposisi (penggabungan) aturan Inferensidiperolehdarikumpulandankorelasiantaraturan. Ada 3 macam: MAX, ADDITIVE, danprobabilistik OR (probor) • Penegasan (defuzzyfication) Input disiniadalahsuatuhimpunan fuzzy yang diperolehdarikomposisiaturan-aturan fuzzy, outputnyaadalahnilaitegs (crisp) Metodedefuzzifikasi: Centroid (Center of Mass), danMean of Maximum (MOM)

  29. MetodeKomposisiAturan • MAX • Solusihimpunandiperolehdengancaramengambilnilaimaksimumaturan, kemudianmenggunakannyauntukmemodifikasidaerah fuzzy, kemudianmenerapkannyake output denganoperator OR. Dirumuskan: • sf[xi]  max(sf[xi], kf[xi]) • Dimana: sf[xi] adalahnilaikeanggotaansolusi fuzzy sampaiaturanke-i • kf[xi] adalahnilaikeanggotaankonsekuen fuzzy sampaiaturanke-i • Additive (sum) • Solusi fuzzy diperolehdenganmelakukanbounded-sumpadasemua output daerah fuzzy. Dirumuskan: • sf[xi]  min(1, sf[xi]+ kf[xi]) • Probabilistik OR (probor) • Solusi fuzzy diperolehdengancaramelakukanproductterhadapsemua output daerah fuzzy. Dirumuskan: • sf[xi]  (sf[xi] + kf[xi]) - (sf[xi] * kf[xi])

  30. Contohinferensi fuzzy model Mamdani Rule: 1 IF x is A3 OR y is B1 THEN z is C1 Rule: 2 IF x is A2 AND y is B2 THEN z is C2 Rule: 3 IF x is A1 THEN z is C3 Agregasimenggunakan MAX

  31. MetodeDefuzzifikasi • MetodeCentroid • Solusicrispdiperolehdenganmengambiltitikpusat (z*) daerah fuzzy • Dirumuskan: • Untuksemestakontinyu • Untuksemestadiskrit • MetodeMean of Maximum (MOM) • Solusidiperolehdenganmengambilnilai rata-rata domain yang memilikinilaikeanggotaanterbesar. • Dirumuskan: • . Dimana: zjadalahtitikdalam domain kosenkuen yang mempunyainilaikeanggotaanmaksimum, dan l adalahjumlahtitik yang mempunyainilaikeanggotaanmaksimum

  32. Contoh: metodeMamdani • Sebuahperusahaanmakanankalengakanmemproduksimakananjenis ABC. Dari data 1 bulanterakhir, permintaanterbesarhinggamencapai 5000 kemasan/hari, danpermintaanterkecilsampai 1000 kemasan/hari. Persediaanbarangdigudang paling banyaksampai 600 kemasan/hari, dan paling sedikitsampai 100 kemasan/hari. Dengansegalaketerbatasannya, sampaisaatini, perusahaanbarumampumemproduksibarangmaksimal 7000 kemasan/hari, sertademiefisiensimesindan SDM tiapharidiharapkanperusahaanmemproduksi paling tidak 2000 kemasan. • Apabilaprosesproduksiperusahaantersebutmenggunakan 4 aturansebagaiberikut: • Rule 1 • IF permintaan TURUN and persediaan BANYAK THEN produksibarang BERKURANG • Rule 2 • IF permintaan TURUN and persediaan SEDIKIT THEN produksibarang BERKURANG • Rule 3 • IF permintaan NAIK and persediaan BANYAK THEN produksibarang BERTAMBAH • Rule 4 • IF permintaan NAIK and persediaan SEDIKIT THEN produksibarang BERTAMBAH • Berapakemasanmakananjenis ABC yang harusdiproduksi, jikajumlahpermintaansebanyak 3500 kemasan, danpersediaandigudangmasih 300 kemasan ? (Gunakanfungsikeanggotaan LINEAR)

  33. Pembentukanhimpunan fuzzy 1 Ada 3 variabel yang digunakan: PERMINTAAN, PERSEDIAAN, dan PRODUKSI PERMINTAAN: 1000 – 5000, x = 3500 PERSEDIAAN: 100 - 600, y = 300 PRODUKSI: 2000 – 7000, z = ? PERMINTAAN, terdiridari 2 himpunan fuzzy: TURUN dan NAIK NilaikeanggotaanuntuknilaiPERMINTAAN = 3500 x = 3500 pmtTURUN[3500] = (5000-3500)/4000 = 0.375 pmtNAIK[3500] = (3500-1000)/4000 = 0.625

  34. Pembentukanhimpunan fuzzy 1 PERSEDIAAN, terdiridari 2 himpunan fuzzy: SEDIKIT dan BANYAK y = 300 psdSEDIKIT[300] = (600-300)/500 = 0.6 psdBANYAK[300] = (300-100)/500 = 0.4

  35. pmtSEDIKIT = 0.6 pmtBANYAK = 0.4 pmtTURUN = 0.375 pmtNAIK = 0.625 2 Nilai-predikatdan Z darisetiapaturan Rule 1 IF permintaan TURUN and persediaan BANYAK THEN produksibarang BERKURANG -predikat1 = pmtTURUN  psdBANYAK = min(pmtTURUN[3500]  psdBANYAK[300]) = min(0.375; 0.4) = 0.375 Rule 2 IF permintaan TURUN and persediaan SEDIKIT THEN produksibarang BERKURANG -predikat2 = pmtTURUN  psdSEDIKIT = min(pmtTURUN[3500]  psdSEDIKIT[300]) = min(0.375; 0.6) = 0.375

  36. Penerapanfungsiimplikasi 2 pmtTURUN = 0.375 pmtNAIK = 0.625 pmtSEDIKIT = 0.6 pmtBANYAK = 0.4 Nilai-predikatdan Z darisetiapaturan Rule 3 IF permintaan NAIK and persediaan BANYAK THEN produksibarang BERTAMBAH -predikat3 = pmtNAIK  psdBANYAK = min(pmtNAIK[3500] psdBANYAK[300]) = min(0.625; 0.4) = 0.4 Rule 4 IF permintaan NAIK and persediaan SEDIKIT THEN produksibarang BERTAMBAH -predikat4 = pmtNAIK  psdBANYAK = min(pmtNAIK[3500]  psdBANYAK[300]) = min(0.625; 0.6) = 0.6

  37. 3 Komposisiantaraturan MAX = Daerah himpunan fuzzy terbagi 3: A1, A2, dan A3. Mencarinilai a1, dan a2 (a – prod_minimal)/interval_prod = nilai_keanggotaan (a1 – 2000)/5000 = 0.375  a1 = 3875 (a2 – 2000)/5000 = 0.6  a2 = 5000 Fungsikeanggotaanhasilkomposisi:

  38. 4 Defuzzifikasi / Menghitung z akhir Menghitung z* menggunakanmetodeCentroidkontinyu Daerah A1 Daerah A2 Daerah A3 Moment Luas

  39. 4 Defuzzifikasi / Menghitung z akhir Menghitung z* menggunakanmetodeCentroidkontinyu Jadi, jumlahmakananjenis ABC yang harusdiproduksisebanyak4793 kemasan.

  40. Kasus 1 BagaimanajikajumlahPERMINTAAN = 2500, PERSEDIAAN = 500, berapakemasanmakananjenis ABC yang harusdiproduksi ? Kasus 2 BagaimanajikajumlahPERMINTAAN = 4500, PERSEDIAAN = 150, berapakemasanmakananjenis ABC yang harusdiproduksi ? Kasus 3 BagaimanajikajumlahPERMINTAAN = 5000, PERSEDIAAN = 75, berapakemasanmakananjenis ABC yang harusdiproduksi ? Gunakanmetode MAMDANI

  41. ANY QUESTIONS ?

More Related