1 / 10

Was ist eine Funktion?

Was ist eine Funktion?. Eine Zuordnung , die jedem Wert der unabhängigen Variable genau einen Wert der abhängigen Variable zuordnet. Beispiele für Darstellungen von Zuordnungen. Formel Symbolische Zuordnung Zuordnungstabelle Graph. Fläche eines Quadrates: A(s)=s² wobei A:  -> .

maureen
Download Presentation

Was ist eine Funktion?

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Was ist eine Funktion? • Eine Zuordnung, • die jedem Wert der unabhängigen Variable • genau einen • Wert der abhängigen Variable zuordnet

  2. Beispiele für Darstellungen von Zuordnungen • Formel • Symbolische Zuordnung • Zuordnungstabelle • Graph Fläche eines Quadrates: A(s)=s² wobei A: ->  • Eine Zuordnung, • die jedem Wert der unabhängigen Variable • genau einen • Wert der abhängigen Variable zuordnet • x f(x) • 3 • 7 • 9 • -10 G(y) G(y)=2y y Überleg dir ein Beispiel für eine Zuordnung (muss nicht mathematisch sein!)bevor du weiterklickst!

  3. Finde in jedem Beispiel die unabhängige Variable! • Formel • Symbolische Zuordnung • Zuordnungstabelle • Graph Fläche eines Quadrates: A(s)=s² wobei A: ->  • Eine Zuordnung, • die jedem Wert der unabhängigen Variable • genau einen • Wert der abhängigen Variable zuordnet • x f(x) • 3 • 7 • 9 • -10 G(y) G(y)=2y y Setzt man für die unabhängige Variable einen beliebigen Wert (aus dem Definitionsbereich!) ein, erhält man den dazupassenden Funktionswert

  4. Unabhängige Variable • Formel • Symbolische Zuordnung • Zuordnungstabelle • Graph Fläche eines Quadrates: A(s)=s² wobei A: ->  • Eine Zuordnung, • die jedem Wert der unabhängigen Variable • genau einen • Wert der abhängigen Variable zuordnet • x f(x) • 3 • 7 • 9 • -10 G(y) G(y)=2y y

  5. Überprüfe die Beispiele, ob sie mit der Forderung „genau einen Wert“ übereinstimmen! • Formel • Symbolische Zuordnung • Zuordnungstabelle • Graph Fläche eines Quadrates: A(s)=s² wobei A: ->  • Eine Zuordnung, • die jedem Wert der unabhängigen Variable • genau einen • Wert der abhängigen Variable zuordnet • x f(x) • 3 • 7 • 9 • -10 G(y) G(y)=2y y

  6. „Genau einen“ • Formel • Symbolische Zuordnung • Zuordnungstabelle • Graph Fläche eines Quadrates: A(s)=s² wobei A: ->  • Eine Zuordnung, • die jedem Wert der unabhängigen Variable • genau einen • Wert der abhängigen Variable zuordnet Zwar eine Zuordnung, aber keine Funktion, da sie einem Wert der unab- hängigen Variable (dem Zirkusdirektor) 2 Werte der abhängigen Variable (Löwe und Pferd) zuordnet! • x f(x) • 3 • 7 • 9 • -10 G(y) G(y)=2y y Wie könnte ein Graph aussehen, der zwar eine Zuordnung aber keine Funktion ist, weil er einem Wert der unabhängigen Variablen mehrere Werte der abhängigen Variable zuordnet?

  7. Bestimme in den Beispielen die abhängige Variable! • Formel • Symbolische Zuordnung • Zuordnungstabelle • Graph Fläche eines Quadrates: A(s)=s² wobei A: ->  • Eine Zuordnung, • die jedem Wert der unabhängigen Variable • genau einen • Wert der abhängigen Variable zuordnet • x f(x) • 3 • 7 • 9 • -10 G(y) G(y)=2y y Die abhängige Variable ändert sich, wenn die unabhängige Variable einen anderen Wert annimmt

  8. Abhängige Variable • Formel • Symbolische Zuordnung • Zuordnungstabelle • Graph Fläche eines Quadrates: A(s)=s² wobei A: ->  • Eine Zuordnung, • die jedem Wert der unabhängigen Variable • genau einen • Wert der abhängigen Variable zuordnet • x f(x) • 3 • 7 • 9 • -10 G(y) G(y)=2y y Die abhängige Variable ändert sich, wenn die unabhängige Variable einen anderen Wert annimmt

  9. Beispiele • Bestimme, ob es sich um eine Funktion handelt und welches die abhängige/unabhängige Variable ist:y=2x+3 In diesem Beispiel treten 2 Variable auf, x und y. Leider ist nicht ersichtlich, welches die abhängige und welches die unabhängige ist. Aus der Schule weißt du, dass meist x für die unabhängige Variable verwendet wird. Um im Beispiel klar zu machen, dass es sich um eine Funktion handelt, müsste man schreiben:y(x)=2x+3

  10. Keine Funktion, da einem x zwei Funktionswerte zugeordnet werden! 0,5 +0,9 Keine Funktion, da einem x zwei Funktionswerte zugeordnet werden! -0,9 Ist Funktion, da zwei verschiedenen Werten der unabhängigen Variable ruhig derselbe Wert der abhängigen Variable zugeordnet werden kann! Beispiele f(x) • Warum handelt es sich bei den folgenden Beispielen um Funktionen/nicht um Funktionen? • „Kreisfunktion“: • Zuordnung von Menge X nach Menge Y: • Zuordnung von Menge A nach Menge B: x

More Related