1 / 46

Lab Report

Lab Report. Tubercle Bacilli Reference Experiment 陳玉書. Outline. Reference 0. Automatic identification techniques of tuberculosis bacteria (2003) 1. Automated Identification of Tubercle Bacilli in Sputum A Preliminary Investigation (1999)

media
Download Presentation

Lab Report

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Lab Report Tubercle Bacilli Reference Experiment 陳玉書

  2. Outline • Reference • 0. Automatic identification techniques of tuberculosis bacteria (2003) • 1. Automated Identification of Tubercle Bacilli in Sputum A Preliminary Investigation (1999) • 2. The automatic identification of tubercle bacilli using image processing and neural computing techniques (1998) • 3. Image processing and neural computing used in the diagnosis of tuberculosis (1998) • 4. Identification of tuberculosis bacteria based on shape and color (2004)

  3. Outline • Experiment • ImageJ • Segmentation

  4. Reference • Keyword • Automatic • Tubercle bacilli • Identification • Sputum • Tuberculosis bacteria (bacterium) • 桿菌 • 肺結核 • 辨視

  5. Reference Automatic identification techniques of tuberculosis bacteria (2003)

  6. Reference-Automatic identification techniques of tuberculosis bacteria (2003) • Method

  7. Reference-Automatic identification techniques of tuberculosis bacteria (2003) • Original image • Edge detection • Closing • Filling of closed regions • Opening • Color segmented image

  8. Reference-Automatic identification techniques of tuberculosis bacteria (2003) • Original image • Edge detection • Closing • Filling of closed regions • Opening • Color segmented image

  9. Reference-Automatic identification techniques of tuberculosis bacteria (2003) • Original image • Edge detection • Closing • Filling of closed regions • Opening • Color segmented image

  10. Reference-Automatic identification techniques of tuberculosis bacteria (2003) • Bacilli characterization • Area • Compactness • Major axis length • Minor axis length • Eccentricity • Perimeter • solidity

  11. Reference-Automatic identification techniques of tuberculosis bacteria (2003)

  12. Reference-Automatic identification techniques of tuberculosis bacteria (2003) • 非桿菌,影響辨視TB的其他細胞

  13. Reference-Automatic identification techniques of tuberculosis bacteria (2003) • 緊湊度(Compactness):值會介於0~1間。同面積大小的圓周長除上原物體的周長,若物體恰為圓形則緊湊度指標為1。 • 離心率(Eccentricity):此參數與比例大小及方向無關,只與形狀有關。離心率為兩焦點間的距離與長軸的比值。值會介於0 ~ 1之間,圓為橢圓的特例,兩焦點的距離為零,所以圓的離心率為0,越是呈線狀的物體其離心率則越接近1 • Hu’s moment ??

  14. Reference-Automatic identification techniques of tuberculosis bacteria (2003) • silhouette coefficient 由Kaufman與Rousseeuw (1987)提出,用以衡量分群結果的好壞,其概念則以衡量各點之間(分群內、群間)相似度,以決定整體分群結果優劣

  15. Reference-Automatic identification techniques of tuberculosis bacteria (2003)

  16. Reference-Automatic identification techniques of tuberculosis bacteria (2003)

  17. Reference Identification of tuberculosis bacteria based on shape and color (2004)

  18. Reference-Identification of tuberculosis bacteria based on shape and color(2004)

  19. Reference-Identification of tuberculosis bacteria based on shape and color(2004) • Autofocus algorithms • Gray Level • Laplacian(邊緣偵測) • Wavelet-based(小波) • autocorrelation

  20. Reference-Identification of tuberculosis bacteria based on shape and color(2004)

  21. Reference-Identification of tuberculosis bacteria based on shape and color(2004)

  22. Reference-Identification of tuberculosis bacteria based on shape and color(2004) • Automatic identification method • Color range (green and yellow up to white) • Length : 1-10 µm • Width : 0.2~0.6 µm • Shape : straight, curved or bent

  23. Reference-Identification of tuberculosis bacteria based on shape and color(2004) • Original image • Edge detection • Closing • Filling of closed regions • Opening • Color segmented image

  24. Reference-Identification of tuberculosis bacteria based on shape and color(2004) • Original image • Edge detection • Closing • Filling of closed regions • Opening • Color segmented image

  25. Reference-Identification of tuberculosis bacteria based on shape and color(2004) • Adaptive color thresholding (適應性色彩調整值) G R B

  26. Reference-Identification of tuberculosis bacteria based on shape and color(2004) • 緊湊度(Compactness):值會介於0~1間。同面積大小的圓周長除上原物體的周長,若物體恰為圓形則緊湊度指標為1。 • 離心率(Eccentricity):此參數與比例大小及方向無關,只與形狀有關。離心率為兩焦點間的距離與長軸的比值。值會介於0 ~ 1之間,圓為橢圓的特例,兩焦點的距離為零,所以圓的離心率為0,越是呈線狀的物體其離心率則越接近1 • Hu’s moments ??

  27. Reference-Identification of tuberculosis bacteria based on shape and color(2004)

  28. Reference-Identification of tuberculosis bacteria based on shape and color(2004)

  29. Reference-Identification of tuberculosis bacteria based on shape and color(2004)

  30. Reference-Identification of tuberculosis bacteria based on shape and color(2004)

  31. Reference-Identification of tuberculosis bacteria based on shape and color(2004)

  32. Reference-Identification of tuberculosis bacteria based on shape and color(2004) • Sensitivity 陽性(P(T+|D+)) • Specificity 陰性(P(T-|D-)) 陽性 (診斷感染) 偽陰性 1-SN P(T-|D+) 陰性 (診斷未感染) 偽陽性 1-SP P(T+|D-)

  33. Reference-Identification of tuberculosis bacteria based on shape and color(2004)

  34. Reference-Identification of tuberculosis bacteria based on shape and color(2004) • ROC曲線 • 1973年,Simpson及Fitter提出以「ROC曲線下的面積」做為診斷工具分辨能力的指標 • 1975年,Bamber指出「ROC曲線下的面積」的意義。他認為這個面積(大於0,小於1的一個數字)代表「強迫二選一」的情形下,診斷工具猜對有病者、無病者的機率。 • 在臨床實務上,幾乎不可能找到百分之百「正確」的診斷工具。因此,「陽性預測值」、「陰性預測值」、「敏感度」、「精確度」、「概算比」等概念紛紛被提出來。醫師較喜 歡使用「陽性預測值」(或「陰性預測值」),因為這項指標是以具有某種檢驗結果的人數做為分母,以真實健康狀態與檢驗結果相符的人數做為分子。醫師如果知 道某檢驗的陽性預測值是90﹪,他就可以告訴一個檢驗結果為陽性的人說:「你有90﹪的機會得了某病。」 ….. http://www.geocities.com/shinyuanclub/update97/lucm0115.html

  35. Experiment Segmentation

  36. Experiment-Segmentation 6187-3 6187-2 6187-1 IMAG6187

  37. Experiment Image processing

  38. Experiment-Image processing 6187-1 6187-2 6187-3 Binary Edge

  39. Experiment-Image processing 6187-1 6187-2 6187-3 留紅處理 Edge

  40. Experiment-Segmentation 6202-2 6187-2 6202-1 IMAG6202

  41. Experiment-Segmentation 6202-1 6202-2 Binary

  42. Experiment-Segmentation 6202-1 6202-1-2 Binary Edge 留紅處理

  43. Experiment-Segmentation 6202-2 Binary 留紅處理 Edge

  44. To be continue…

More Related