210 likes | 352 Views
Stat240 : P rincipal C omponent A nalysis ( PCA ). Open/closed book examination data. >scores= as.matrix ( read.table ("http://www1.maths.leeds.ac.uk/~charles/mva-data/openclosedbook.dat", head=T)) > colnames (scores) >pairs(scores). MC VC LO NO SO 77 82 67 67 81 63 78 80 70 81
E N D
Open/closed book examination data >scores=as.matrix(read.table("http://www1.maths.leeds.ac.uk/~charles/mva-data/openclosedbook.dat", head=T)) >colnames(scores) >pairs(scores) MC VC LO NO SO 77 82 67 67 81 63 78 80 70 81 75 73 71 66 81 55 72 63 70 68 63 63 65 70 63 53 61 72 64 73 51 67 65 65 68 ... ...
Sample Variance-Covariance > cov.scores=cov(scores) > round(cov.scores,2) MC VC LO NO SO MC 305.77 127.22 101.58 106.27 117.40 VC 127.22 172.84 85.16 94.67 99.01 LO 101.58 85.16 112.89 112.11 121.87 NO 106.27 94.67 112.11 220.38 155.54 SO 117.40 99.01 121.87 155.54 297.76 > eigen.value=eigen(cov.scores)$values > round(eigen.value,2) [1] 686.99 202.11 103.75 84.63 32.15 > eigen.vec=eigen(cov.scores)$vectors > round(eigen.vec,2) [,1] [,2] [,3] [,4] [,5] [1,] -0.51 0.75 -0.30 0.30 -0.08 [2,] -0.37 0.21 0.42 -0.78 -0.19 [3,] -0.35 -0.08 0.15 0.00 0.92 [4,] -0.45 -0.30 0.60 0.52 -0.29 [5,] -0.53 -0.55 -0.60 -0.18 -0.15 variances loadings
Principal Components PC1: PC2: PC3: PC4: PC5:
Scree plot >plot(1:5, eigen.value, xlab="i", ylab="variance", main="scree plot", type="b") > round(cumsum(eigen.value)/sum(eigen.value),3) [1] 0.619 0.801 0.895 0.971 1.000
“princomp” • R has a function to conduct PCA > help(princomp) > obj=princomp(scores) > plot(obj, type="lines") > biplot(obj)
PCA in checking MVN assumption • By examining normality of PCs, especially the first two PCs. • Histograms, q-q plots • Bivariate plots • Checking outliers
PCA in regression • Data: Ynx1, Xnxp • PCA is useful when we want to regress Y on a large number of independent variables (X) • Reduce dimension • Handle collinearity • One would like to transform X to the principal components • How to choose principal components?
PCA in regression • A misconception: retain those with large variances • There is a tendency that PCs with large variances can better explain the dependent variable • But PCs with small variances might also have predictive value • Should consider largest correlation
PCA vs FA • Both attempt to do data reduction • PCA leads to principal components • FA leads to factors PCA FA X1 X2 X3 X4 X1 X2 X3 X4 PC1 … … PC4 F1 F2 F3
FA in R • The function is “factanal” • Example: v1<- c(1,1,1,1,1,1,1,1,1,1,3,3,3,3,3,4,5,6) v2 <- c(1,2,1,1,1,1,2,1,2,1,3,4,3,3,3,4,6,5) v3 <- c(3,3,3,3,3,1,1,1,1,1,1,1,1,1,1,5,4,6) v4 <- c(3,3,4,3,3,1,1,2,1,1,1,1,2,1,1,5,6,4) v5 <- c(1,1,1,1,1,3,3,3,3,3,1,1,1,1,1,6,4,5) v6 <- c(1,1,1,2,1,3,3,3,4,3,1,1,1,2,1,6,5,4) m1 <- cbind(v1,v2,v3,v4,v5,v6) obj=factanal(m1, factors=2) obj=factanal(covmat=cov(m1), factors=2) plot(obj$loadings,type="n“) text(obj$loadings,labels=c("v1", "v2", "v3", "v4", "v5","v6")) The default method is MLE The default rotation method used by “factanal” is varmax
Example: Examination Scores • P=6: Gaelic, English, History, Arithmetic, Algebra, Geometry • N=220 male students • R=
Factor Rotation • Motivation: get better insights • Varimax criterion • The rotation that maximizes the total variance of squares of (scaled) loadings