1 / 44

James Bearman AJ Brinker Dean Bryson Brian Gershkoff Kuo Guo Joseph Henrich Aaron Smith

James Bearman AJ Brinker Dean Bryson Brian Gershkoff Kuo Guo Joseph Henrich Aaron Smith. Daedalus Aviation Conceptual Design Review: “ The Daedalus One ”. Agenda. Current Configuration Mission and Requirements Advanced Technologies Carpet Plots and Sizing Design Trade-Offs

melia
Download Presentation

James Bearman AJ Brinker Dean Bryson Brian Gershkoff Kuo Guo Joseph Henrich Aaron Smith

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. James Bearman AJ Brinker Dean Bryson Brian Gershkoff Kuo Guo Joseph Henrich Aaron Smith Daedalus AviationConceptual Design Review:“The Daedalus One”

  2. Agenda • Current Configuration • Mission and Requirements • Advanced Technologies • Carpet Plots and Sizing • Design Trade-Offs • Structural Considerations • Aerodynamics • Performance • Cost • Logistics

  3. Supercritical Airfoil Upper Surface Blown Flaps Geared Turbofans Lifting Canard Composite Structure Advanced Avionics Configuration

  4. Current Configuration

  5. Daedalus One Mission Provide a versatile aircraft with medium range and capacity to meet the needs of a commercial aircraft market still expanding in the year 2058 Incorporate the latest in technology to provide reliability, efficiency, while fulfilling the need for an environmentally friendly transportation system Possess the ability to operate at nearly any airfield 5

  6. Mission Profiles Mission One Schaumburg to North Las Vegas 1300 nmi Mission Two South Bend to Burbank 1580 nmi Mission Three West Lafayette to Urbana-Champaign to Cancun 1200 nmi Mission Four Minneapolis to LAX 1330 nmi 6

  7. System Requirements

  8. Advanced Technologies • Composites • Stronger, lighter aircraft • Artificial Intelligence/Automated Pilot • Reduction in flight crew • Automatic flight control, collision avoidance • Fly by Light • Weight savings over copper wire • Faster response

  9. Upper Surface Blowing • Capability to increase CLmax to 7 • Wing CLmax (clean) ≈ 1.54 • Takeoff CL (w/ upper surface blowing) ≈ 4 --Nicolai, Fundamentals of Aircraft Design, 1976

  10. Geared Turbofans • The Geared Turbofan • Current predictions say: “The Geared Turbofan engine will deliver a 12 percent reduction in fuel burn, 50 percent reduction in noise and emissions, and 40 percent reduction in maintenance costs over today's commercial engines.”–www.pw.utc.com • By 2038 we believe it will achieve over current technology: • 30% reduction in fuel burn • 75% reduction in noise and emissions • 50% reduction in maintenance costs http://www.flug-revue.rotor.com/FRHeft/FRHeft07/FRH0702/FR0702c1.JPG

  11. Geared Turbofans • Thrust per engine - 25,000 lbs • SFC per engine - 0.42/hour • Fan Diameter - 8 ft. • Bypass Ratio - 8 http://www.flug-revue.rotor.com/FRHeft/FRHeft07/FRH0702/FR0702c1.JPG

  12. Geared Turbofans reduce CO2 produced by more than 12% compared to today’s engines Reduce cumulative noise levels about 20dB below the current Stage 4 regulations Environmental Impact

  13. Reliability & Maintainability • Low wing with Geared Turbofans mounted at the leading edge • Easy location for engine maintenance • Geared Turbofan engines reduce maintenance costs by 40% over today's commercial engine • No complicated powered lift devices

  14. Carpet Plot Summary • Generation • Takeoff weight generated through RDS • Initial starting point • T/W=.23 • W/S=84 • Carpet Plot Range • T/W=0.23 - 0.414 • W/S=84 - 160 • Varied Wing Sweep (and saved 5,000 lbs)

  15. Carpet Plot Summary • Constraints Used • Fuel Burn per Seat-Mile • Field Length with OEI • Cruise Speed 0.75M • Constraints Not Used • Takeoff Ground Roll • Field Length All Engines Operational • Landing Ground Roll

  16. Carpet Plots

  17. Aircraft Sizing: Methodology • Carpet Plots • Approximated Design Point • RDS • Primary Method of Sizing • MATLAB Code for Component Weight Breakdown

  18. Aircraft Sizing: Mission Step Cruise For Best Range Cruise Climb- Miss Approach Descend & Hold Takeoff & Climb Descend & Hold Taxi Land & Taxi Land & Taxi • Maximum Range Mission (1,800 nmi) • Typical Commercial Mission Profile • Maximizes Aircraft Range • Fuel Reserves (200 nmi) • Extended Loiter Time • Flight Diversion to Another Airport

  19. Input Parameters W/S – 120 T/W – 0.32 AR – 14 Λwing – 10° λwing – 0.4 (CL)TO – 4 Aircraft Sizing: Dimensions • Weights • GTOW – 87,100 lbs • We – 34,700 lbs • Wf – 24,600 lbs • Payload – 27,800 lbs • We / Wo – 0.40 • Wf/Wo – 0.28

  20. Structures ~ 20,000 lbs Wing ~ 8,300 lbs Fuselage ~ 7,200 lbs Canard ~ 600 lbs Vert. Tail ~ 600 lbs Landing Gear ~ 3,300 lbs Weight Group Breakdown • Propulsion ~ 8,100 lbs • Engines ~ 7,000 lbs • Fuel System ~ 900 lbs • Systems ~ 200 lbs • Equipment ~ 7,000 lbs • Controls ~ 2,800 lbs • Avionics ~ 2,100 lbs

  21. Historical Comparison Daedalus One

  22. Final Configuration

  23. Daedalus One Cabin Layout • 108 Seats, Single Class • Seat Pitch: 32 in • Seat Width: 20 in • Aisle Width: 24 in • 2 Galley Areas: 35 and 16 ft2 • 2 Lavs: ~20 ft2

  24. Selected Design Trade-Offs • Initial design: High Wing Low Canard • Current Design: Low Wing High Canard • Reason: Landing gear placement, better accessibility for ground service, easier to maintain with lower wing • Wing Sweep Study: Result 10° • Varied Sizing Based on 10° sweep and 20° sweep • Reason: Find the most weight efficient aircraft • Upper Surface Blowing • Placed engines above the wings near leading edge • Reason: Increase lift especially for takeoff and landing

  25. Selected Design Trade-Offs • Initial Design: Tri-tail • Current Design: Single Tail • Reason: Reduced weight, sizing proved 3 Tails not needed • Forward Wing Extension • Reason: Allows more fuel, helps move Center of Gravity forward • Elliptical Fuselage • Reason: Allow for more comfortable passenger cabin

  26. Load Paths/Internal Layout

  27. Load Paths/Internal Layout

  28. Load Paths/Internal Layout

  29. Main Wing-Super Critical 20712 Representative (custom airfoil to be developed) Data obtained from analysis in Fluent 12% thick airfoil Allows for high cruise speed via controlling shock formation Wing Airfoil Selection

  30. Airfoil Performance: Wing • Zero lift angle of attack ≈ -5° • Max Cl ≈ 1.7 • Stall Angle ≈ 18°

  31. Stabilizer Airfoil Selection • Canard and Tail-Super Critical 20012 • Data obtained from analysis in Fluent • Symmetric airfoils are standard for vertical and horizontal tails

  32. Airfoil Performance: Stabilizer • Zero Lift Angle of Attack ≈ 0 ° • Max Cl ≈ 1.18 • Stall Angle ≈ 15°

  33. Flight Envelope Absolute Ceiling Service Ceiling Stall Limit q Limit

  34. V-n Diagram

  35. Weights, Balance & Stability GTOW W0f + reserves OWE + payload We + trapped fuel OWE We

  36. Stability and Control • Canard • Scanard: 300 ft2 • Elevator Area Ratio: 1/3 • AR: 4 • Sweep: 15° • Taper Ratio: 0.4

  37. Stability and Control • Vertical Tail • Sized for One Engine Out at Takeoff • Stail: 310 ft2 • Rudder Area Ratio: 1/3 • AR: 2 • Sweep: 15° • Taper Ratio: 0.4

  38. Cost Estimates • RDT&E Cost: $24.4B USD (2008) • Cost per aircraft: $49M USD • Sale Price: $54M USD • Break Even Point: 455 Aircraft • Operating Cost: $11.5M USD/Yr • $0.0616/seat-mile USD • Jet A: $2.50/Gal

  39. Ground Operations Diagram Lav Water Fuel Galley Electric Baggage Jetway Baggage Electric Tow

  40. Summary: Daedalus One • 108 Passenger Capacity • 1800 nmi Range • 2700 ft Takeoff Ground Roll • Affordable Acquisition Cost • Reasonable Operational Cost • Opens new markets • Enhances service to existing markets • Improves reliability and ease of air travel • Allows air travel industry to expand beyond current limits

  41. Operators are standing by….

  42. Drag Polar: Takeoff & Landing

  43. Drag Polar: Cruise

  44. Max Cruse Speed

More Related