1 / 46

Stephen Lars Olsen Seoul National University February 10, 2014

A New Spectroscopy of Hadrons. High-1 Gangwando. Stephen Lars Olsen Seoul National University February 10, 2014. Visions of hadrons. T h r o u g h a t h e o r i s t ‘ s m i n d. What is seen by an experimenter. multiquark states from diquarks & diantiquarks. red - blue diquark.

melody
Download Presentation

Stephen Lars Olsen Seoul National University February 10, 2014

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. A New Spectroscopy of Hadrons • High-1 • Gangwando Stephen Lars Olsen Seoul National University February 10, 2014

  2. Visions of hadrons Throughatheorist‘s mind What is seen by an experimenter

  3. multiquark states from diquarks & diantiquarks red-bluediquark green-reddiquark blue-greendiquark d u d u d u  _  _ _ 3 3 3 u d s s s d u d s u s s magenta anti-triplet cyan anti-triplet yellow anti-triplet (anti-red) (anti-green) (anti-blue) H-dibaryon d u Pentaquark u d u c tetraquark meson _ u s _ _ u s s d d c d magenta-cyan-yellow color singlet 5-q state magenta-cyan-yellow color singlet 6-q state green-magenta color singlet 4-q state (anti-green) “exotic” hadrons that particle theorists love

  4. multiquark states from “molecules” _ _ D u d u d s d K c d L p s u p,s,w s,w p,s,r,w p,s,w u d d u _ u d _ _ u N c u s L p u D* _ _ _ Pentaquark H-dibaryon baryonium tetraquark meson “exotic” hadrons that nuclear theorists love

  5. _ Non-qq mesons or non-qqq baryonspredicted by `QCD-motivated’ models u d u d s _ u u s d s d Where are they?? glueballs H-dibaryon pentaquarks D0 _ _ c c u _ u _ c c u _ p c _ _ _ u D*0 c diquark-diantiquarks hybrids molecules non-qq & non-qqq color-singlet combinations _

  6. The XYZ quarkonium-like mesons

  7. Charmonium spectrum Any meson that decays to a c and c quark should fit in one of the (gray) unassigned states.

  8. XYZ charmoniumlike mesons 1++ Zc(3900)+ 3899 ± 6 46 ± 22 1+(-)Y(4260)p-(p+J/y) 0++ 0-+ 0+(+)/1—(+) 0-+ 0+(+)/1—(+) 1+(-)

  9. _ cc assignments for the XYZ mesons? no unassigned levels for the 1-- Y(4260) & Y(4360) the(4) charged Zs must have a minimal quark content of ccud _ _ theY(3915) mass and G(YwJ/y) are too high for the cc0(2P). Also, no sign of YDD theX(3940) & X(4160) as the hc(3S) & hc(4S) would imply huge hyperfine splittings for n=3&4 _ theX(3872) is a long complex story

  10. the Y(4260) found by BaBar in e+e- gISR+-J/ s(e+e- hadrons) BaBar PRD86, 051102 Ecm (GeV) M(+-J/) (GeV)

  11. Y(4260) +-J/ confirmed by Belle e+e-gISRp+p-J/y Belle PRL99, 182004 No sign of Y(4260)  D(*)D(*) Y(4260) peak in s(p+p-J/y) occurs at a dip in s(D(*)D(*)) M(+-J/) (GeV) e+e-hadrons G(p+p-J/y) is large, 10~100 × charmonium X. H. Mo et al., PLB 640, 182 BESII PRL88, 101802 Ecm (GeV)

  12. Is there a b-quark version of Y(4260)? ? p+p-ϒ(1S) e+e-hadrons B*B* e+e-p+p-ϒ(1S) e+e- hadrons BB BB* e+e-p+p-J/y e+e-p+p- J/y Ecm (GeV)

  13. “bottomonium” bb mesons _ ϒ(4S) 2MB = 10358.7 MeV Is there any anomaly in (4S,5S) p+p-  (1S) ? p+p-

  14. G(4S)p+p-(1S) G”(5S)”p+p-(1S) (4S)  (1S) p+p- 2S 3S 4S Belle: PRD 75 071103 Belle: PRL 100 112001 • 23.6 fb-1 477 fb-1 Lum ~1/20th σ ~1/5th Signal ~×6 325±20 evts 52±10 evts Signal “5S” 3S 2S 4S

  15. “(5S)” p+p-  (1S) ? Υ(3S)π+π- π+π- M2(ϒπ±) Υ(2S)π+π- M2(ϒπ±) Υ(1S)π+π- π+π- M2(ϒπ±) M2(π+π-)

  16. “(5S)” p+p-  (1S) ? Υ(3S)π+π- π+π- M2(ϒπ±) M(ϒ(3S)π±) Υ(2S)π+π- π+π- Υ(1S)π+π- M(ϒ(1S)π±)

  17. Belle PRL 108, 122001 (2012) + 121.4 fb-1 “(5S)” p-Zb1,2 p+(1,2,3S) p+ 10,660 MeV 10,610 MeV (3S) (2S) (1S) M((nS)π+)max

  18. JP of the Zb states

  19. JP of the Zb states Belle PRELIMINARY

  20. Summary of parameter measurements mB+mB* 2mB* B b d Zb(10610) Zb(10650) M=106082 MeV M=106532 MeV =18.42.4 MeV =11.52.2 MeV B* b d March 2012 Belle PRL 108, 122001

  21. _ _ B-B* & B*-B* molecules?? B Zb(106050)± Zb(106010)± B* b b b _ _ b _ _ B* B* _ _ B-B* “molecule” B*-B* “molecule” MZb(106010) –(MB+MB*) = + 3.6 ± 1.8 MeV MZb(106010) –2MB* = + 3.1 ± 1.8 MeV Slightly unbound threshold resonances?? M=10608.11.7 MeV M=10653.31.5 MeV Belle: =15.52.4 MeV =14.02.8 MeV MB* + MB* = 10650.2  1.0 MeV PDG: MB + MB* = 10604.50.6 MeV

  22. _ _ Zb(10610)BB* & Zb(10650)B*B* “(5S)” p-(BB*)+ “(5S)” p-(B*B*)+ _ _ Zb(106050)± Zb(106010)± M(B*B*) _ M(BB*) _ Belle arXiv:1209.6450 Bf(Zb(10610)BB* Bf(Zb(10610)p+(bb) _ Bf(Zb(10610)B*B* Bf(Zb(10610)p+(bb) =6.1±0.4 _ =2.8±0.4 _ _

  23. Are there c-quark versions of Zb’s Y(4260) discovered Is there a b-quark equivalent? Yes, & it decays to Zb states ??? Are there c-quark versions of Zb’s?

  24. run BEPCII/BESIII as a Y(4260) factory Typical J/ +- e+e- +-J/ @Ecm=4260 MeV J/ + Y4260 e+ e+ - Belle PRL99, 182004 e+e-gISRp+p-J/y BESIII: arXiv:1303.5949 (e+e- +-J/) = (62.91.93.7) pb

  25. Y(4260)p-Zc(3900)+p+J/y BESIII: PRL 110, 252001 p- Significance >8 p+ • Mass = (3899.0±3.6±4.9) MeV • Width = (46±10±20) MeV • Fraction = (21.5±3.3±7.5)%

  26. Zc(3900) confirmed by Belle Mass = (3894.5 ± 6.6 ± 4.5) MeV Width = (63 ± 24 ± 26) MeV Fraction = (29.0 ± 8.9)% (stat. err. only) Belle: PRL 110, 252002

  27. Y(4260)p-Zc(3900)+ D0 _ D*+  DD* _ Zc Y(4260) Significance >18 p- BESIII PRL 112, 022001 (last month) D0D*+ _ DD* _ D+D*0 _ • Mass = (3883.9 ±1.5 ±4.2) MeV • Width= (24.8 ±3.3 ±11.0) MeV • DD*/p+p-J/y = 6.2 ± 1.1 ± 2.7 _

  28. JP of the Zc(3900)? JPC=?? initial state: Zc q e+ e- 1;±1 final state: p- JPC=0- BESIII data JP=1- The data clearly establish JP=1+ JP=1+ JP=0-

  29. Are there others?

  30. Study Y(4260)p+p-hc decays ghc 16 channels sharp M(phc) peak but not near ~3900 MeV p+p- g M(p±hc) BESIII PRL 111, 242001 (2 months ago) hadrons

  31. Y(4260)p+Zc(4020)- p-hc no significant signal for Zc(3900)±p±hc p+ Zc(4020) p- BESIII PRL 111, 242001 M(p±hc) g 5.6 ± 2.8 MeV above D*0D*- thresh. = 4017.3 ±0.3 MeV Mass = (4022.9 ±0.8 ±2.7) MeV Width= (7.9 ±2.7 ±2.6) MeV fraction = 0.18 ± 0.07 Fit results: hadrons

  32. _ _ Does the Zc(4020)DD*? … D*D*? Zc(4020)D*D*? _ Zc(4020)DD*? _ 4023 MeV BESIII arXiv:1308.2760 4023 MeV BESIII PRL 112, 022001 D0D*+ _ D+D*0 _ _ M(D*D*) Something there (~10s!), but … • Mass = (4026.3 ± 2.6 ± 3.7) MeV • Width= (24.8 5 ± 5.6 ± 7.7) MeV Fit results: No sign of Zc(4020)DD* _ … higher mass (~1.5s) and width (~1.5s) than Zc(4020)phc signal

  33. Zb & Zc mesons --“smoking guns” for non-qq mesons-- _ Zb Zc u b u c • decay to (nS) (J/y)  must contain bb (cc) pair • electrically charged  must contain ud pair _ _ b d c d _ B0 b d b d b b B*+ B0-B*+ ? ? Mixture?

  34. molecules?

  35. CMS search for b-sector version of X(3872) CMS: PLB 727 (2013) 57 (MB + MB*)-MU(1S)= 1144MeV >> mw Relevant channel is ispin-conserving XbwU(1S) (MD0 + MD*0)-My(1S)= 776 MeV < mw

  36. Y(4260) X(3872)? BESIII arXiv:1310.4101 X(3872) X(3872) X(3872) is this from Y(4260) decays?

  37. Y(4260) X(3872)? …cont’d X(3872) All cm energies combined: 6.3s ~20 evt signal BESIII arXiv:1310.4101 Consistent with originating from the Y(4260)

  38. Summary • QCD-motivated spectroscopies most favored by theorists do not seem to exist • evidence for Pentaquarks has disappeared • H-dibaryon with mass near 2mL is excluded at stringent levels • Numerous non-qq mesons not specific to QCD have been found • - Baryonium in J/ygpp at BESII and BESIII ?? • - XYZ mesons containing cc and bb pairs • The JPC=1- - Y(4260) and “(5S)” have no compelling interpretation • - huge couplings to p+p-J/y (p+p-(nS))  not predicted in any model!! • - strong sources of charged Zc (Zb) states with M near mD(*)+mD* (mB(*)+mB*) • - evidence for a strong Y(4260)gX(3872) transition _ _ _ _

  39. Lots of pieces X(4160) Y(4274) Zb(10610) Zb(10650) Y(3915) X(4630) Zc(3900) Y(4140) X(3940) Are they all from the same puzzle? Z1(4050) X(4250) Y(4660) Z(4430) Y(4008) Z2(4250) Y(4260) Y(4360) X(3872)

  40. Back-up slides

  41. Event in the Belle Detector

  42. The “XYZ” mesons Zb1(10610) 10,607±2 18±2 1-p±ϒ(1,2,3S)/hb(1,2S); BB* `ϒ(5S)’p±Zb1 Zb2(10650) 10,653±2 12±2 1-p±ϒ(1,2,3S)/hb(1,2S);B*B* `ϒ(5S)’p±Zb2

  43. “Old” hadronspectrosopy 1964 The constituent quark-parton model was proposed independently by Gell-Mann and Zweig. Three fundamental building blocks 1960’s (p,n,l) Þ 1970’s (u,d,s) mesons are bound states of a of quark and anti-quark: baryons are bound state of 3 quarks:

  44. QPM Superseded by QCD in the 1970s:observed particles are color singlets color + complementary color  white white 3 primary colors  blue-yellow green-magenta red-cyan Λ= (uds) Mesons are color-anticolorpairs Baryons are red-blue-green triplets 44

  45. QCD “diquarks” ? symmetric 6-tet antisymmetric anti 3-plet - d d d u u u + u d d u u d u u d d 6  _ =  3 + s d + s u d s u s u - - s s s u s d u s d s s s _ 3  3 = 3  6

  46. Visions of hadrons Throughatheorist‘s mind What is seen by an experimenter

More Related