350 likes | 476 Views
開発環境工学概論( 6 ). 2006 年 5 月 24 日. Course Outline. Introduction Upstream Operations (上流部門操業) Exploration (探鉱) Reservoir Characterization (モデル化) Reservoir Management (油ガス層管理) CO 2 Sequestration ( CO 2 地下固定). Climate Change: Global. 1900 年以降, 0.6℃ 上昇.
E N D
開発環境工学概論(6) 2006年5月24日
Course Outline • Introduction • Upstream Operations (上流部門操業) • Exploration (探鉱) • Reservoir Characterization (モデル化) • Reservoir Management (油ガス層管理) • CO2 Sequestration (CO2地下固定)
Climate Change: Global 1900年以降,0.6℃上昇
Level of Scientific Understanding 気象変動要因の科学的解明度 煙霧質 対流圏オゾン 太陽活動 飛行機雲 巻雲 成層圏オゾン 反射度
世界の部門別CO2排出量割合 2100年の予測: 現在の374 ppmから500~1000 ppmに上昇, 2~4.5 ℃ の上昇 人間の環境適応性, 石炭ガス化,コールベッドメタン技術, 長期的対策:化石燃料消費を削減 短期的対策:エネルギー効率の改善, CO2捕集・固定
CO2 Capture Project Separation Methods • Chemical Absorption • Membrane Filtering
Capacity and Costs at Oil/Gas Fields 155 provinces 油価:$15/bbl を仮定 油層では油生産の収入があるが、ガス層ではない。
CO2 Processing & Storage Technology • Characterization • Well drilling • Facility designing • Well & field monitoring
Petroleum Technology Relevant to CO2 Sequestration • CO2攻法 CO2精製・圧入,油層選別, 圧入計画,油層シミュレーション, 観測井,トレーサー,4D震探 • ガス地下貯蔵 貯留層管理・圧入計画, スリムホール観測井 • 天然CO2生産 CO2の長期的影響評価, モニタリング,耐腐食性機器
CO2 Phase Diagram Critical Point 臨界点: Tc = 31 °C pc = 73.8 bar (1,070.4 psi) For CO2 sequestration at super-critical conditions, storage depths need to be 600 m or deeper.
CO2 Capture & StorageSleipner Gas Field, North Sea 9 % CO2 in natural gas is separated, and injected into the shallower formation of capacity 600 billion tons.
Time-Lapse Seismic for MonitoringCO2 Migration and Dissolution
Pushdown Effects due to CO2 Wave velocity is reduced through CO2 storage interval. CO2 is distributed as thin layers of high concentration and dispersed CO2. Velocity pushdown due to thin layers only cannot model the observed pushdown.
CO2 FloodingWeyburn Field, Canada Aquifer: permeable Aquitard: semi-permeable
Weyburn Field Production 22 million tons CO2 will be stored in Weyburn field over the project life.
Simulation Results at 25 years Injection (a) Gas Saturation (b) CO2 mole fraction in aqueous phase (c) Aqueous phase density (kg/m3) (d) pH (e) Dissolved Calcite (mol/m3) (f) Calcite precipitation (mol/m3)
Simulation Results after 200 years (a) Gas Saturation (b) CO2 mole fraction in aqueous phase (c) Aqueous phase density (kg/m3) (d) pH (e) Dissolved Calcite (mol/m3) (f) Calcite precipitation (mol/m3)
Simulation Results after 500 years (a) Gas Saturation (b) CO2 mole fraction in aqueous phase (c) Aqueous phase density (kg/m3) (d) pH (e) Dissolved Calcite (mol/m3) (f) Calcite precipitation (mol/m3)
Gas Saturation & Aqueous CO2 Mole Fraction (a) Gas saturation at 25 yrs (b) After 200 years (c) After 500 years (b) After 200 years (c) After 500 years (a) Aqueous CO2 mole fraction at 25 yrs
Aqueous Phase Density & pH (b) After 200 years (c) After 500 years • Aqueous phase density at 25 yrs (a) pH at 25 yrs (b) After 200 years (c) After 500 years
Dissolved Calcite & Precipitated Calcite (a) Dissolved calcite at 25 yrs (b) After 200 years (c) After 500 years (a) Precipitated calcite at 25 yrs (b) After 200 years (c) After 500 years
枯渇油ガス田利用の問題点 • CO2捕集コスト • 貯留層キャラクタリゼーションの不完全性 ・ 1,000年~1,000,000年のスケール ・ 帽岩の特性,CO2・岩石・流体の反応 • モニタリング,検証 ・ 地化学トレーサ,シミュレーション,観測井,4D震探 • CO2排出権取引 ・ 世界的に機能する取引システムの導入 • 油増産とCO2保留の矛盾