1 / 74

Card Sorting for Information Architecture: Methods and Samples

Learn about the usage areas, methods, and samples of card sorting for information architecture. Understand how users group information and improve website navigation.

Download Presentation

Card Sorting for Information Architecture: Methods and Samples

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting for Information Architecture Usage Areas, Methods and Samples Steffen Schilb (Steffen@cardsort.net) IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  2. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Outline • Introduction • Card Sorting: The Standard Method • Cluster Analysis • Computer-Based Card Sorting • Card Sorting Variants • Conclusion • References • Questions and Discussion IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  3. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Introduction 1 Introduction IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  4. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Introduction: Why do People browse the Internet? IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  5. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Introduction: Why do People browse the Internet? • Typical User Behaviour (Wodtke, 2003) • Search for specific Information • Complete a Task • Browsing around Problem Information cannot be found IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  6. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Introduction:Why does this happen? Hierarchy, Navigation Scheme No intuitive Navigation Scheme, Hierarchy People expect Content somewhere else IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  7. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Introduction:Why does this happen? Misunderstood Wording Inconsistent Terms English Vs. German Ambiguous Terms IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  8. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Introduction How can this be improved? IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  9. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Introduction: How can this be improved? • With Card Sorting • Users group the Contents and develop a Hierarchy themselves • Helps to understand how Users group Information • Can provide insight into mental Model • Serves as helpful Input to specify IA IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  10. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Introduction • Benfits of Card Sorting • Simple, Cheap, Quick • Established • Involves Users • Flexible • Provides good Results IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  11. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Introduction • Usage Areas • Designing a new Site • Designing a new Area of a Site • Redesigning a Site • Early Stages of Prototyping • Large Websites IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  12. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: The Standard Method 2 Card Sorting: The Standard Method IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  13. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: The Standard Method Preparation IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  14. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: The Standard Method • Preparation • Write down the Topics • Write each Content on a Card • Size of Cards should be manageable • Number of Cards should be manageable (30-100) • Label is extremely important IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  15. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Politics Album Charts Card Sorting: Preparation Same Level of Detail IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  16. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Tennis Icehockey Card Sorting: Preparation Cover one distinguished Content IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  17. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Inspiration Opening Hours Card Sorting: Preparation Describe the Content in a unambiguous Way IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  18. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Preparation • Before the Exercise starts... • Define Test Conditions (Single, Group,...) • Select Participants • Invite Participants IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  19. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Conducting the Exercise Conducting the Exercise IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  20. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Conducting the Exercise • Procedure • Welcome Participants • Introduce Card Sorting Method • Give Instructions • Sorting out Cards • Sorting into multiple Categories IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  21. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Conducting the Exercise • Step 1: Sorting the Cards IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  22. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Conducting the Exercise • Step 2: Finalizing the Sorting IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  23. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Conducting the Exercise • Step 3: Labeling the Clusters IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  24. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Closed Card Sorting • Variant: Closed Card Sorting • Categories are predefined • Top-down Approach • Redesign/Relaunch of Websites IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  25. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Analysis (Manual) Analysis IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  26. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Analysis • Analysis Methods • Documention • „Data-Eyeballing“ • Spreadsheet Analysis • (Clusteranalysis) IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  27. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Analysis • Data-Eyeballing • Look for dominant Organization Schemes (Patterns) • Adjust Scheme to make kinds of Categories consistent • Set asside the odd Categories that don‘t match IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  28. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Data-Eyeballing • Result: Simple Taxonomy Sport Politik Wirtschaft Fussball 1. Bundesliga 2. Bundesliga ... Tennis Weltrangliste ATP-Turniere ... Basketball NBA ... Aktuelles Aus aller Welt Deutschland ... Innenpolitik News ... Außenpolitik Europa ... Deutschland News ... Weltweit News ... Börse News DAX Dow-Jones ... IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  29. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Data-Eyeballing • Attributes of Data-Eyeballing • Efficient • Easy and fast But: • Highly subjective IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  30. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Analysis • Spreadsheet Analysis IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  31. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Card Sorting: Analysis • Spreadsheet Analysis • More information can be found at Boxes and Arrows: Analyzing Card Sort Results with a Spreadsheet Template IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  32. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis 3 Cluster Analysis IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  33. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis • Cluster Analysis • Statistical Analysis Method for identifying Groups • Most common Analysis Method • Mostly done with Computer • Procedure: • Step 1: Distance Matrix • Step 2: Tree Diagram IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  34. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis Distance Matrix IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  35. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Distance Matrix • Example Participant 1 Participant 2 Participant 3 Projekte AG‘s Aktuelle Projekte Studentisches Fachbereiche Insitute Campus Lageplan Anreise Aktivitäten AG‘s Aktuelle Projekte Studium Fachbereiche Institute Allgemeine Infos Lageplan Anreise Aktivitäten AG‘s Studium Fachbereiche Aktuelle Projekte Institute Informationen Lageplan Anreise IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  36. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Distance Matrix • Distance Matrix P1 IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  37. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Distance Matrix • Distance Matrix P1 IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  38. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Distance Matrix • Distance Matrix P1 + P2 IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  39. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Distance Matrix • Example Participant 1 Participant 2 Participant 3 Projekte AG‘s Aktuelle Projekte Studentisches Fachbereiche Insitute Campus Lageplan Anreise Aktivitäten AG‘s Aktuelle Projekte Studium Fachbereiche Institute Allgemeine Infos Lageplan Anreise Aktivitäten AG‘s Studium Fachbereiche Aktuelle Projekte Institute Informationen Lageplan Anreise IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  40. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Distance Matrix • Distance Matrix (P1+P2)+P3 IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  41. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Distance Matrix • How to calculate T ∑ Kt(At/Bt) KF(AF/BF) = t=1 T K: Relative Coordinate A: Relative X-Coordinate B: Relative Y-Coordinate F: Final Matrix T: Number of Participants t: Participant IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  42. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Distance Matrix • From Distance Matrix to Tree Diagrams • Single Linkage Algorithm • Complete Linkage Algorithm • Average Linkage Algorithm IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  43. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Single Linkage Algorithm • Distance Matrix IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  44. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Single Linkage Algorithm • How it works • Pair (Aktuelle Projekte/AG‘s) is most frequently grouped together (58%) • Combine Pair to one Cluster and calculate new Distances • d(E; CE1 + CE2) = min{d(E;CE1), d(E;CE2)} • d(ASTA; AG‘s + Aktuelle Projekte) = min{d(ASTA;AG‘s), d(ASTA; Aktuelle Projekte)} = min{0.69, 0.92}= 0.69 IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  45. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Single Linkage Algorithm • New Distance Matrix IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  46. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Single Linkage Algorithm • Steps • AG‘s+Aktuelle Projekte 0.42 • (AG‘s+Aktuelle Projekte)+ASTA 0.69 • ((AG‘s+Aktuelle Projekte)+ASTA)+Alumni 0.81 IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  47. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Single Linkage Algorithm • Final Dendogram AG‘s Aktuelle Projekte ASTA Alumni 0.69 0.42 0.81 1.00 0.50 0.00 IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  48. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Single Linkage Algorithm • Attributes • min{0.69;0.92}=0.69 • Nearest-Neighboor-Method • Minimum-Distance Rule • Chaining Phenomenon • Isolates Outliners (Most important Attribute) IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  49. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Complete Linkage Algorithm • Attributes • max{0.69;0.92}=0.92 • Furthest-Neighboor-Method • A lot of small Groups are formed • Large groups are mostly formed at the End • Does not identify Outliners well IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

  50. Card Sorting for Information Architecture: Usage Areas, Methods and Samples Cluster Analysis: Average Linkage Algorithm • Attributes • 0,5x(0.69) + 0,5x(0.92) = 0.80 • Takes mean Distance • No Chaining Phenonemon IATagung Frankfurt :: 28./29.05.2005 :: Steffen Schilb

More Related