1 / 45

Quark dynamics, gluodynamics, and a droplet of quark matter

Quark dynamics, gluodynamics, and a droplet of quark matter. Mei Huang. CCNU, Wuhan, Oct.8-12, 2018. 2004, a rejecting letter from Edward for a postdoctoral position! The longest and warmest rejecting letter I have ever had in my life!. Content. I. Quarkyonic phase from hQCD

Download Presentation

Quark dynamics, gluodynamics, and a droplet of quark matter

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Quark dynamics, gluodynamics, and a droplet of quark matter Mei Huang CCNU, Wuhan, Oct.8-12, 2018

  2. 2004, a rejecting letter from Edward for a postdoctoral position! The longest and warmest rejecting letter I have ever had in my life!

  3. Content I. Quarkyonic phase from hQCD II. A droplet quark matter

  4. Dynamical holographic QCD model and Quarkyonic phase

  5. Lagrangian of Quarks & Gluons at UV Lattice QCD DSE Effective field theories and models QM, NJL, SM, HLS, CHPT, NRQCD…… color flux tube Dual superconductor … Holographic QCD (hQCD) Vacuum (IR) StrongQCD: chiral symmetry breaking, confinement FRG

  6. Strongly Coupled Gauge Theory Quantum Gravity Holographic Duality: Gravity/QFT AdS/CFT : Original discovery of duality Supersymmetry and conformality are required for AdS/CFT. Holographic Duality: (d+1)-Gravity/ (d)-QFT

  7. Holographic Duality & RG flow Coarse graining spins on a lattice: Kadanoff and Wilson J(x): coupling constant or source for the operator arXiv:1205.5180

  8. Holographic Duality & RG flow QFT on lattice equivalent to GR problem from Gravity RG scale -> an extra spatial dimension Coupling constant -> dynamical filed arXiv:1205.5180 The extra dimension plays the role of energy scale in QFT, with motion along the extra dimension representing a change of scale, or renormalization group (RG) flow.

  9. Graviton-dilaton-scalar system Danning Li A AdS5 From UV to IR Dynamical holographic QCD ! Deformation of AdS5

  10. Graviton-Dilaton-Scalar system D.N. Li, M.H., JHEP2013, arXiv:1303.6929 Action for pure gluon system: Graviton-dilaton coupling Gluonic background Action for light hadrons: KKSS model 5D linear sigma model Total action:

  11. Unquenched background Quenched background

  12. Quark dynamics Gluodynamics Dilaton background Flavor probe DhQCD SS:D4-D8 D3-D7 Dq brane: D8, D7 Dp brane: D4, D3 Polyakov-loop potential PNJL NJL model

  13. Pure gluodynamics 1 parameter describing the slope of the Regge spectra of the glueball

  14. Glueball spectra: Yidian Chen, M.H., arXiv: 1511.07018 Agree well with lattice result except three trigluon glueball0-- , 0+- and 2+-

  15. Equation of state comparing with lattice result! Danning Li, Song He, M.H. JHEP2015

  16. Electric screening Heavy quark potential Polyakov loop: color electric deconfinement D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011

  17. Magnetic screening and magnetic confinement spatial Wilson loop spatial string tension D.N. Li, S. He, M.H., Q. S. Yan, arXiv:1103.5389, JHEP2011

  18. Shear viscosity from dynamical hQCD UV is too strong Danning Li, Song He, M.H. JHEP2015 Lacey et al., PRL 98:092301,2007

  19. Bulk viscosity from dynamical hQCD Dmitri Kharzeev, Kirill Tuchin arXiv:0705.4280, Danning Li, Song He, M.H. JHEP2015

  20. Jet quenching characterizing phase transition! UV is too strong Danning Li, Jinfeng Liao, M.H. PRD2014 Shuzhe Shi, Jinfeng Liao, Miklos Gyulassy 2018

  21. Jet quenching from dynamical hQCD 2 times larger than pQCD result Majumder, Muller, Wang, PRL 2007 Danning Li, Song He, M.H. JHEP2015

  22. Quenched gluodynamics +flavor dynamics

  23. Baryon number fluctuations at mu=0 A. Bazavov et al., PRD95 (2017) 054504, arXiv:1701.04325 [hep-lat]. PNJL DhQCD Z.B Li, K.Xu,X.Y.Wang, M.H. arXiv:1801.09215 Xun Chen, Danning Li, M.H, to appear

  24. Quenched result: Quarkyonic phase PNJL DhQCD Xun Chen, Danning Li, M.H, to appear Sasaki, Friman, Redlich, hep-ph/0611147

  25. Solving phase structure of full dynamics is still in progress! Zhibin Li, Kun Xu, Danning Li, M.H.

  26. Unquenched background Quenched background

  27. Produced hadron spectra compared with data D.N. Li, M.H., JHEP2013, arXiv:1303.6929 Ground states: chiral symmetry breaking Excitation states: linear confinement

  28. II. A droplet quark matter

  29. There are many works on finite size effect, this work is directly motivated by …… G.A.Almasi, R.Pisarski, V.Skokov, arXiv:1612.04416

  30. Taking the simplest NJL model: Zero mode contribution dominant at small size:

  31. Kun Xu, M.H., to appear

  32. Quantized 1st order phase transition! Zero mode contribution dominant at small size! Kun Xu, M.H., to appear

  33. Kun Xu, M.H., to appear

  34. 3D plot for Baryon number fluctuations Kun Xu, M.H., to appear

  35. 3D plot for Baryon number fluctuations Kun Xu, M.H., to appear

  36. Two bumps structure for baryon number fluctuations along the freeze-out line! Kun Xu, M.H., to appear

  37. Catalysis of chiral symmetry breaking!

  38. Conclusion and Outlook • Dynamical holographic QCD model captures main features of gluodynamics (linear confinement) and quark dynamics (chiral symmetry breaking), with few parameters can describe QCD well including hadron spectra, EOS, phase transitions and transport properties • DhQCD model is a “bottom-up” Dp-Dq model, or a holographic version of PNJL (PQM) model • Zero mode contribution becomes more and more important when sizes becomes smaller.

  39. Happy Birthday!

  40. A realistic PNJL model • Bhattacharyya,S. K. Ghosh, S. Maity, S. Raha, • R. Ray, K. Saha and S. Upadhaya,arXiv:1609.07882. NJL part: Polyakov Loop:

  41. Bhattacharyya,S. K. Ghosh, S. Maity, S. Raha, • R. Ray, K. Saha and S. Upadhaya,arXiv:1609.07882. • Parameters are fitted to pressure density lattice result at zero baryon chemical potential, • Tc=154 MeV; • EOS: p,e,s, trace anomaly; • 3) Baryon number fluctuations

  42. Bhattacharyya,S. K. Ghosh, S. Maity, S. Raha, • R. Ray, K. Saha and S. Upadhaya,arXiv:1609.07882. Z.B Li, K.Xu,X.Y.Wang, M.Huang arXiv:1801.09215

  43. Z.B Li, K.Xu,X.Y.Wang, M.Huang arXiv:1801.09215 Two freeze-out lines: Freeze-out data: BES-I data and other experimental data f1: f2:

  44. Kurtosis along freeze-out lines No dip structure f1 cross the phase boundary while f2 not! Z.B Li, K.Xu,X.Y.Wang, M.Huang arXiv:1801.09215 Dip structure 1(experimentaldata)>PNJL>NJL 1. Agree well with BES-I data! --->equilibrium result can describe the experimental data!!! 2. The dip structure is sensitive to the relation between the freeze-out line and the phase boundary

  45. Out-of equilibrium, without the constraint of stability condition -> Sign change ? The sign and magnitude at freeze-out is most important! S.Mukherjee, R.Venugopalan, Y.Yin, Phys.Rev.Lett. 117 (2016) no.22, 222301

More Related