1 / 29

Ben Burningham

Brown dwarfs in large scale surveys. Ben Burningham. Brown dwarfs come of age Fuerteventura, 21 st May 2013. Plan. a bit of history the recent past the state of the art future challenges. The first wide area surveys. not digital relatively simple data pipeline c 1200 BC 36 stars.

mimi
Download Presentation

Ben Burningham

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. Brown dwarfs in large scale surveys Ben Burningham Brown dwarfs come of age Fuerteventura, 21st May 2013

  2. Plan • a bit of history • the recent past • the state of the art • future challenges

  3. The first wide area surveys • not digital • relatively simple data pipeline • c 1200 BC • 36 stars L5 dwarf @ ~100 au T5 dwarf @ ~ 100 au

  4. Greek pioneers • Timocharis & Aristillus c300BC • Hipparchus c135BC • 1022 stars • m < 6 • updated in 964 (Sufi) and 1543 (Copernicus) • no brown dwarfs • (but did discover precession of equinox) L5 dwarf @ ~2000 au T5 dwarf @ ~ 1000 au

  5. The next 2000 years…. • Tycho Brahe (1598): • m < 6 • 1004 stars • astrometric accuracy ~2’ • Lalande et al (1801) • 50K stars • m < 9 • Henry Draper (1918 – 1924) • first spectroscopic survey • all sky • m < 10 • Bonner Durchmusterung  (1852 – 1859); Cordoba Durchmusterung (1892); Cape Photographic Durchmusterung (1896) • total 1 million stars  • all sky • m < 9 - 10 L5 dwarf @ ~10000 au T 5dwarf @ ~2000 au

  6. Photographic surveys 20th century dominated by three facilities: • Palomar observatory: • POSS I (1949 – 1958) • -27 to +90 degrees • B ~ 21 • POSS II • Bj < 22.5, Rc < 20.8, Ic < 19.5 • UK & ESO Schmidt telescopes: • ESO/SERC • Bj ~ 22.5, Rc ~ 21 • Ic band • Ic < 19 L5 dwarf @ ~20 pc T5 dwarf @ ~ 4 pc

  7. The first brown dwarfs - 1995 Rebolo, Zapatero Osorio, & Martin, 1995 Nakajima et al 1995

  8. Kelu - 1 Ruiz et al (1997) • L2 dwarf selected by proper motion • 1st epoch: • ESO survey plates • 2nd epoch: • dedicated follow-up of 400 sq degs • examined with a blink comparator

  9. Legacy of photographic surveys • DSS I & II • Catalogues from densitometer scans: • GSC I & II • USNOA, B • superCOSMOS • Proper motion catalogues e.g. LHS, LSPM, PPMXL etc • identification of (ultra) cool >M7 dwarfs • the first L dwarf (Ruiz et al 1997) (the trickle before the flood)

  10. The age of digital sky surveys Facilitated by : • new detectors • improvements in data processing and storage • first brown dwarfs identified in late 1990s (important: allows photometric selection) New generation dominated by 3 surveys: • DENIS • 2MASS • SDSS

  11. DENIS • Overview • southern sky (ESO 1m schmidt) • i < 18.5, J < 16.5 , Ks < 14.0 • finished in 2001 • 355 million sources • Results: • 49 L dwarfs: • Delfosse et al (1997, 1999) • Martin et al (1999) • Bouy et al (2003) • Kendall et al (2004) • Phan-Bao et al (2008) • Martin et al (2010) • 1 T dwarf • Artigua et al (2010) L5 dwarf @ ~40 pc T5 dwarf @ ~ 20 pc

  12. 2MASS • All sky • JHK (J < 16.5; H < 15.7; Ks < 15.2) • >99% complete for J < 15.8, H < 15.1, Ks < 14.3 • game changer for substellar science L5 dwarf @ ~45 pc T5 dwarf @ ~ 20 pc

  13. Brown dwarfs in 2MASS • 2MASS team searched via cross match of 2MASS against USNO for B+R band dropouts • visual inspection to ensure no optical detection • distinguished as L and T candidates based on JHK colours • subsequent searches cross matched 2MASS with e.g. SDSS, and included proper motion searches • 403 L dwarfs identified to-date: • Kirkpatrick et al (1999, 2000, 2008, 2010); Reid et al (2000, 2008); Gizis(2002);Giziset al (2000, 2003); Kendall et al (2003, 2007); Cruz et al (2003, 2007); Burgasser et al (2003, 2004); Wilson et al (2003); Folkes et al (2007); Metchev et al (2008); Looper et al (2008) Sheppard & Cushing (2009); Scholz et al (2009); Geissler et al (2011) • 55 T dwarfs: • Kirkpatrick et al (2000, 2010); Burgasser et al (1999, 2000, 2002, 2003, 2004, ); Cruz et al (2004) Tinney et al (2005); Looper et al (2007); Reid et al (2008)

  14. SDSS SDSS DR9: • 14,555 square degrees • 932,891,133 “sources” • 1.7 million extragalactic spectra • 700K stellar spectra • z’ < 20.8ish • “arguably the most successful scientific project ever undertaken” L5 dwarf @ ~75 pc T5 dwarf @ ~ 40 pc

  15. Brown dwarfs in SDSS 381 L dwarfs to-date: • photometric selection: • Fan et al (2000) Hawley et al (2002); Geballeet al (2002); Schneider et al (2002); Knapp et al (2004); Chiu et al (2006); Zhang et al (2009); Scholz et al (2009) • spectroscopic selection: Schmidt et al (2010) • highlights risky nature of photometric selection 57 T dwarfs: • Leggett et al (2000); Geballe et al (2002); Knapp et al (2004); Chiu et al (2006)

  16. Highlights from the end of the beginning • definition of the “L” spectral class • 830 L dwarfs discovered • extended to halo population and young moving groups • definition of the “T” spectral class • 113 T dwarfs discovered • extended sequence to Teff ~ 700K (T8) • diversity of properties beyond Teff sequence apparent • gravity? • metallicity? • dust properties? Kirkpatrick et al 1999, 2000 Burgasser et al 2006

  17. Beyond stamp collecting • luminosity function of L dwarfs • Cruz et al (2007) • space density of T dwarfs  constraining the IMF • Allen et al (2005) • Metchev et al (2008) • binary statistics (e.g. Burgasser et al 2003) • benchmarks (e.g. G570D, HD3651B) • weather!!! (e.g. Radigan et al 2012; Buenzli et al 2012)

  18. Photometric survey exploitation cookbook Select candidates from survey(s) using colours e.g. z’ – J > 2.5 Follow-up photometry to remove contaminants e.g. scattered M dwarfs; SSOs Spectroscopic confirmation SCIENCE

  19. UKIRT Infrared Deep Sky Survey (UKIDSS)Lawrence et al 2007 • UKIDSS consists of 5 surveys • Large Area Survey (LAS) • 3600 sq. degs, J = 19.6 • 2 epoch for ~1500 sq degs • Galactic Plane Survey (GPS) • 1800 sq. degs, K=19 • Galactic Clusters Survey (GCS) • 1400 sq. degs K=18.7 • Deep Extragalactic Survey (DXS) • 35 sq. degs, K=21.0 • Ultra Deep Survey (UDS) • 0.77 sq. degs, K=23.0 L5 dwarf @ ~175 pc T5 dwarf @ ~ 110 pc Casali et al 2007

  20. 171 T dwarfs identified (Lodieu et al 2007; Pinfield et al 2008; Burningham et al (2008, 2009, 2010a,b, 2013) • ~70 (+) L dwarfs • (Day-Jones et al 2013) • extended T sequence to Teff ~ 500K (Lucas et al 2011) • halo T dwarfs (Smith et al – today!) • more young L dwarfs (see Marocco et al poster)

  21. CFBDS(IR) • ~1000 sq degs in i & z (+NIR sections) • early T8+ discovery (CFBDS 0059; Delorme et al 2008) • L5 – T8 luminosit function (Reyle et al 2010) • extremely cool binary CFBDSIR J1458+1013AB (Liu et al 2011) • planetary mass T dwarf CFBDSIR2149-0403 (Delorme et al 2012)

  22. WISE – another leap forwards Kirkpatrick et al (2011) • all sky • 3.4, 4.6, 12, and 22μm • Y dwarfs (Cushing et al 2011; Kirkpatrick et al 2012) • seriously, Teff ~ 300K brown dwarfs!! • halo(?) T dwarfs (Gomes et al – today!) • buckets of bright T dwarfs (Mace et al 2013) • complementary data facilitating all sorts of cool science with UKIDSS, 2MASS etc L5 dwarf @ ~80 pc T5 dwarf @ ~ 50 pc Y dwarf @ ~12 pc

  23. WISE vs UKIDSS – FIGHT! J <18.3 18.3 < J <18.8

  24. Survey league table

  25. The immediate future ~1 MILLION BROWN DWARFS!!!! VISTA: • VISTA Hemisphere Survey (VHS) • (Y)J(H)Ks • J < 19.6 • ~100K L0 – T5 • ~2000 late-T dwarfs • VIKING • 1500 sq degs • ZYJHK • J < 21.0 Dark Energy Survey: • 4000 sq degs • grizy (z < 24.7, y < 23.0) PanStarrs (+UKIRT Hemisphere Survey): • griz (+J) • z < 23.0 (+ J < 19.6) L5 dwarf @ ~330 pc T5 dwarf @ ~200 pc …and that’s before LSST

  26. What’s the point? • rare objects: • benchmarks • halo T dwarfs/subdwarfs • young objects • improved space density • scale height for BDs (as a function of spectral type) need kinematic data need to use survey data for more than candidate selection

  27. Photometric redshifts spectral types Skrzypek & Warren (poster here!)

  28. Large scale spectroscopic surveys EUCLID: • VIS (<24.5 AB) + YJH (<24 AB) wide imaging survey over 15000 sq deg • YJH < 26.5 (AB) over 40 sq degs, • slitless spectroscopy (J ~ 19?) VLT-MOONS (proposed): • 500 sq arcminute, 500 object NIR MOS • deep survey key element of science case • scale height for LT dwarfs • c.f SDSS for M dwarfs!

  29. What do we want next? • proper motions (PanStarrs; LSST; 2nd epoch of VHS !?) • deep spectroscopic survey (VLT-MOONS; EUCLID) • what about photometric surveys? • best colours for characterisation?

More Related