1 / 56

SSS/SAS/ASA Proofs

SSS/SAS/ASA Proofs. C. !. 1. 2. A. B. D. Quiz Question. W. !. 3. 4. Y. Z. X. !. G. I. H. J. F. K. L. C. !. A. 1. D. 2. B. M. !. R. N. O. !. B. E. C. 1. 2. A. D. Quiz Question. !. N. Q. 4. 5. O. P. M. C. 1. 2. B. A. D. E. G. H. 1. 2. F.

mingan
Download Presentation

SSS/SAS/ASA Proofs

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. SSS/SAS/ASAProofs

  2. C ! 1 2 A B D

  3. Quiz Question W ! 3 4 Y Z X

  4. ! G I H J F K L

  5. C ! A 1 D 2 B

  6. M ! R N O

  7. ! B E C 1 2 A D

  8. Quiz Question ! N Q 4 5 O P M

  9. C 1 2 B A D E

  10. G H 1 2 F E C B D

  11. B E C 1 2 A D

  12. B D F 1 2 A C 3 4 E

  13. A X Y 1 3 B 2 4 C

  14. A X Y 1 3 2 4

  15. S 3 1 X R T 2 4 U

  16. C D 1 2 3 4 A B Y

  17. E F G C D A B

  18. S R Q P T

  19. Quiz Question E B C D A

  20. Given as homework

  21. B A C Hw 11.3 D

  22. A C E B Hw 11.3 D

  23. F G D E A B C Hw 11.4

  24. U T S W V R Hw 11.4

  25. N R Hw 11.5 M S P Q

  26. B D A C Hw 11.5

  27. A Hw 11.6 1 2 3 4 B M C

  28. QUIZ Z Y 2 3 4 1 W X

  29. Triangle Congruence and Similarity Proofs Augustus Vitug Melissa Moize

  30. Sketch AB  AC BD  DC AD  AD BAD  CAD Proof Title: Statement Reason • Given • Given • Reflexive property • SSS •  Given AB  AC BD  DC Prove BAD  CAD

  31. Sketch ABC DCB CB  BC DBC  ACB ABC  DCB CA  DB AB  CD Proof Title: Statement Reason • Alt. Int. ’s • reflexive • Alt. Int. ’s • ASA • CPCTC • CPCTC •  Given ABCD Prove AC  BD CD  AB

  32. Sketch ABC  DCB CB  BC DBC  ACB  ABC   DCB AB  CD ADC  BAD  ABE  DCF AE DE BECE Proof Title: Parallelogram Diagonals Bisect Each Other Statement Reason • Alt. Int. ’s • Reflexive property • Alt. Int. ’s • ASA • CPCTC • Alt. Int. ’s • ASA • CPCTC • CPCTC Given ABCD Prove AEDE BECE

  33. Sketch ABC  DCB CB  BC ACB  DBC ABC  DCB A  D ABC + DBC  DCB +ACB Proof Title: Statement Reason • Alt. Int. ’s • reflexive • Alt. Int. ’s • ASA • CPCTC • 2nd Postulate •  Given Prove A  D ABD  DCA

  34. Sketch ABC DCB CBBC CBD BCA ABC  DCB FBD+BFD+BDF  ECA+CEA+CAE BDF CAE AEFD ACBD BFD  CEA CE BF EF  FE EF+FB  FE+EC EB  CF AB  CD AEFD CFD  BEA Proof Title: Compound Polygon #1 Statement Reason • Alt. int. ’s • reflexive property • Alt. int. ’s • ASA • Triangle Sums • Subtraction Property • Given • CPCTC • ASA • CPCTC • Reflexive Property • Sums of equals • Sums of equals • CPCTC • Given • SSS Given ABCD AEFD AEC=90 BFD=90 Prove CFD  BEA

  35. Sketch AC BD ACD BDC CD  DC ADC  BDC CE+BE  DE+AE CE  DE CED is isos Proof Title: Compound # 2 Statement Reason • Given • Def. isos • Reflexive • SAS • Sums of Equals • Subtraction property • def. isos. Given ABCD is iso. Prove CED is isos

  36. Sketch AB  CD B  D BE  DE BEA  DEC G   H EC  EA FE  XE FEA  XEC AF  CX Proof Title: ? Statement Reason • Given • Given • Def. of Midpoint • SAS • CPCTC • CPCTC • Def. of Midpoint • SAS • CPCTC Given AB  CD B  D E is the midpoint of BD & FX Prove AF  CX

  37. Sketch AECE DEC  BEA BE DE AEB  CED ABE  CDE ABE,CDE are alt. int. ’s AB || DC Proof Title: Simple Bowtie Statement Reason • Def. Bisector • Vertical ’s • Def. Bisector . • SAS • CPCTC • Def. Alt. Int. ’s •  Alt. Int. ’s are congruent Given Line AC bis. Line BD Prove AB || CD

  38. Sketch A  D BC  FE B = 90- A  E = 90- D B  E ABC  DEF BA  DE Proof Title: Statement Reason • given • given • difference of equals • - property • ASA • CPCTC •  Given ABC is a Right  BC  FE A  D Prove BA  DE

  39. Sketch AGE+EGB CGF+ FGD AGB  CGD FGD  EGB ABGCDG DFG  BEG Proof Title: Compound Bowtie #1 Statement Reason • Given • Vertical ’s • Given • SAS • Vertical ’s • Given • Alt. Int. ’s • ASA • CPCTC •  Given Prove

  40. Sketch AED  BEC DE  CE ADC-EDC  BCD ECD ADE  BCE ADE  BCE AD  BC ADC   BCD DC  CD ADC  BCD Proof Title: Statement Reason • Vertical ’s • Def. iso.  • Dif. Of equals • Sub. Prop. • ASA • CPCTC • Sum of Equals • Reflexive Prop. • SAS •  Given EDC is isosceles Prove ADC  BCD

  41. Sketch AE  BE AED  BEC DE  CE ADE  BCE FDE  GCE DECE FED  GEC FD  GC EDC  ECD ADE+EDC  BCE+ ECD ADCBCD FGDC Proof Title: Statement Reason • Given • Vert. ’s • def. iso.  • SAS • CPCTC • def. iso.  • alt. int. ’s • CPCTC • Def. iso.  • Addition prop. Of equality •  Given AEBE EDC is isosceles Prove FG DC

  42. Sketch AC  BD ACD  BDC CD  DC  ACD   BDC AD  BC Proof Title: Diagonals of a Rectangle Statement Reason • Dfn. Rectangle • Dfn. Rectangle • Reflexive • SAS • CPCTC •  Given Rectangle ABCD Prove AD  BC

  43. Sketch BAM  CAM ABAC B C BAM  CAM BM  CM BMA  CMA BMC  180 BMA = 1/2180=90= CMA AM  bis. Of BC Proof Title: Statement Reason •  bis. • Given • Def. iso.  • ASA • CPCTC • CPCTC • straight ’s • Angle Addition Given ABC w/ AM  bis. ABAC Prove AM bis.

  44. Sketch ¾=5/6.6666 AD/AB=AE/AC A  A ADE  ABC Proof Title: Statement Reason • 36&2/3=4  5= 20 • CPSTP • Reflexive • SAS Given DE || BC Prove ADE  ABC

  45. Sketch AEBE BEDAEC CE  DE AC  BD Proof Title: Simple butterfly Statement Reason • Given • Vertical angels • Given • CPCTC Given AEBE CEDE Prove AC  BD

  46. Sketch BCA  EFD FC  CF AF  CD AF + FC  DC + CF ABC  DEF Proof Title: Statement Reason • Alt. Int. ’s • Reflexive • Given • Addition • ASA •  Given AF  DC FE || CB AB || DE Prove ABC  DEF

  47. Sketch BG  EG EG + GF=BG+GC BC  EF FC  FC AF+FC=DC+CF GFC  GCF AC=CD ABC  DEF Proof Title: Statement Reason • Given • Sum’s of =‘s • Segment addition • reflexive • Sum’s of =‘s • def. isosceles  • Segment Addition • SAS •  Given FGC Isosceles AF  DC BG  EG Prove ABC  DEF

  48. Sketch BM  CM AMB = 90 = AMC AB  AC B  C BAM  CAM BAM   CAM AM is  bis. of A Proof Title: Isos. Triangle  to  bisector Statement Reason • Def.  bis. • Def.  bis. • given • def. isos. triangle • SAS • CPCTC •  • Given • ABC is isos. AB  AC AM is  Prove  bis. of BC is  bis. Of A

  49. Sketch BMA=90= CMA B  C B+ BMA+ BAM=180 C+ CMA+ CAM =180 B+ BMA+ BAM= C+ CMA+ CAM BAM  CAM  AM is bis. of A Proof Title: Statement Reason • Def. Alt. • isos triangle •  sums •  sums • transitive • - property •  Given ABC is isos. AC  AB AM is Alt. Prove Alt. AM is  bis. of A

More Related