1 / 18

A Model for Electric Characteristics of P3HT:PCBM Bulk Heterojunction Solar Cells

RIAPA. A Model for Electric Characteristics of P3HT:PCBM Bulk Heterojunction Solar Cells. Khadije Khalili 1 , Hossein Movla 2 , Hamed Azari Najafabadi 1 1 Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, Iran

minh
Download Presentation

A Model for Electric Characteristics of P3HT:PCBM Bulk Heterojunction Solar Cells

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. RIAPA A Model for Electric Characteristics of P3HT:PCBM Bulk Heterojunction Solar Cells Khadije Khalili1, Hossein Movla2, HamedAzari Najafabadi1 1 Research Institute for Applied Physics and Astronomy (RIAPA), University of Tabriz, Tabriz, Iran 2 Department of Solid State Physics, Faculty of Physics, University of Tabriz, Tabriz, Iran

  2. Contents ☼A short history of solar cells ☼Polymer Solar Cell ☺Principle and device configuration ☼Organic Solar Cell Materials ☼ The objectives of our work ☺ Electric characteristics ☺ Results ☼ References NSSC90

  3. A short history of solar cells Medium efficiency , but expensive • First Generation • - Single crystal silicon wafers (c-Si) • Second Generation • - Amorphous silicon (a-Si) • - Polycrystalline silicon (poly-Si) • - Cadmium telluride (CdTe) • - Copper indium gallium diselenide (CIGS) alloy • Third Generation • - Nanocrystal solar cells • - Photoelectrochemical (PEC) cells • • Gräetzel cells • - Polymer solar cells • - Dye sensitized solar cell (DSSC) • Fourth Generation • - Hybrid - inorganic crystals within a polymer matrix Cheap , but low efficiencies NSSC90

  4. Polymer Solar Cell Principle and device configuration: • Absorption of light • Exciton dissociation • Double-layer device • Bulk-heterojunction (BHJ) • Charge transportation  Li Gui, LU GuangHao, et al. Progress in polymer solar cell, Chinese Science Bulletin (2007) NSSC90

  5. Organic Solar Cell Materials Most important Semiconducting polymers as 1- electron donor polymers: (MEH-PPV), (MDMOPPV), poly(3-hexeylthiophene) (P3HT), (PFO- DBT), (PCDTBT), regioregular poly(3-hexeylthiophene) (RR- P3HT) 2- hole acceptor materials: fullerene (C60) 6,6-phenyl C61 -butyric acid methyl ester (PC61BM), 6,6-phenyl C71-butyric acid methyl ester (PC71BM) and photovoltaic devices are fabricated on cleaned glass substrates with a patterned ITO layer. Other common materials are consist of the conducting polymer poly-wethylenedioxy thiophenex:poly-wstyrene sulfonatex(PEDOT:PSS), the active layer (P3HT:PCBM), and aluminum electrodes are thermally evaporated. NSSC90

  6. The objectives of our work are: • We choose a polymer solar cell with P3HT:PCBM composite as photoactive layer. • Considering Shottky contacts, barrier lowering due to the image potential, Langevin recombination, and field dependent mobility, we adopt the time-independent one-dimensional drift-diffusion model. • Using the boundary conditions at x=0 and x=d and this fact that , we solve Poisson’s equation and find expressions of current density equation, charge carrier distribution, and J-V characteristics. • By using calculated equations, we plot charge carrier density and the terminal current versus cell thickness with different applied voltage, from equilibrium to built-in voltage. • Finally, we compare our calculations for two thickness 100 and 200nm.  A. B. Walker, S. J. Martin, A. Kambili, J.Phys.: Condense. Matter 14, 9825(2002) NSSC90

  7. Electric characteristics: NSSC90

  8. Results NSSC90

  9. Fig 1. Variation in the band edge of the semiconductor in terms of the active region distance in thermal equilibrium for different donor like (n-type) dopings. 100 nm 200 nm NSSC90

  10. Fig 2. Variation of electron mobility versus cell voltage. NSSC90

  11. Fig 3. The injected electron profile in a semiconductor with cathode on the right hand side and anode on the left hand side. In the case of V=0 is thermal equilibrium. 100 nm 200 nm NSSC90

  12. Fig 4. Diffusion and drift currents at 300 K in the double Schottky barrier device at 0.5 V. Diffusion current is larger than the drift current and the two currents flow in the opposite directions. 100 nm 200 nm NSSC90

  13. Fig 5. Calculated l J-V characteristics of an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell in dark and under different illumination intensities. 100 nm 40 mw/cm2 60 mw/cm2 80 mw/cm2 40 mw/cm2 60 mw/cm2 80 mw/cm2 200 nm NSSC90

  14. Fig 7. Calculated J-V characteristics of an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell in dark and under different illumination intensities. The dashed blue line is the Lampert et.al. calculated dark current. 40 mw/cm2 60 mw/cm2 80 mw/cm2 NSSC90

  15. Fig 8. Calculated J-V characteristics of an ITO/PEDOT:PSS/P3HT:PCBM/Al solar cell for different thickness. NSSC90

  16. References [1] V. D. Mihailetchi, Device Physics of Organic Bulk Heterojunction Solar Cells, MSc Ph.D.-thesis series 2005-14,ISSN 1570-1530. [2] H. Hoppe, N.S.Sariciftci, J. Mater. Res. 19, (2004) 1924. [3] N. S. Sariciftci, L. Smilowitz, A. J. Heeger, and f.wudl, Science 258 (1992) 1474. [4] G. Yu, J. Gao,J. C. Hummelen,F. Wudl, and A. J. Heeger, Science 270 (1995) 1789. [5] P. W. M Blom, V. D. Mihailetchi, L. J. A. Koster, and D. E. Markov, Adv. Mater. 19 (2007) 1551. [6] S. S. Pandy, W. Takashima, S. Nagamatsu , T. Endo, M. Rikukawa, K. Kaneto, Jpn. J. Appl. Phys. 39 (2000) 94. [7] Z. Bao, A. Dodabalapour, A. Lovinger, Appl. Phys. Lett. 69 (1996) 4108. [8] H. Sirringhaus, N. Tessler and R. H. Friend, Science 280 (1998) 1741. [9] A. D. Pasquier, H. E. Unalan, A. Kanwal, S. Miller and M. Chhowalla, Appl. Phys. Lett. 87 (2005) 203511. [10] Q. H. Xu, D. Moses, A. J. Heeger, Phy. Rev. B 67 (2003) 245417. [11] C. J. Brabec,G. Zerza, G. Cerullo, S. De Silvestri, S. Luzzati, J. C. Hummelen, N. S. Sariciftci, Chem. Phys. Lett. 340 (2001) 232 NSSC90

  17. [12] W. U. Huynh, J. J. Dittmer, W. C. Libby, G. L. Whiting, A. P. Alivisatos, Adv.Funct.Mater. 13 (2003) 73 [13] J.Y.Kim, K.Lee, N.E.Coates, D.Moses, T.Nguyen,M.Dante,A.J.Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing, Science 317(2007) 222. [14] C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv. Func. Mater. 11 (2001) 15. [15] H. Hoppe, N. Arnold, D. Meisner and N. S. Saricirtci: Modeling the optical absorption whit in conjugated polymer/fullerene-based bulk heterojunction organic solar cells, Sol. Energy Mater. Sol. Cells. 80, 105 (2003) [16] P. Kumar, S. C. Jain, V. Kumar, S. Chand, R. P. Tandon, J. Appl. Phys. 105, 104507 (2009). [17] A. B. Walker, S. J. Martin, and A. Kambili, J. Phys.: Condens. Matter 14, 9825 (2002). [18] S. J. Martin, Alison B. Walker, A. J. Campbell and D. D. C. Bradley, J. Appl. Phys. 98, 063709 (2005). [19] V. D. Mihailetchi, P. W. M. Blom, J. C. Hummelen, and M. T. Rispens, J. Appl. Phys. 94, 6849 (2003). NSSC90

  18. Appreciate for your interest NSSC90

More Related