1 / 25

System Biology Term Project Tryptophan Production

System Biology Term Project Tryptophan Production. Group 5 Teammates: 林瑋耿 , 吳東耘 , 許博凱 , 彭嘉冠. 在現存途徑中提高目標產物代謝流 ( 五個方法 ). 增加代謝途徑中限速步驟酶編碼基因的複製數 強化啟動子為主的關鍵基因的表現系統. 在現存途徑中提高目標產物代謝流 ( 五個方法 ). 提高目標途徑活化因子的合成速率 去活化目標途徑抑制因子的編碼基因 阻斷與目標途徑相競爭的代謝途徑. Tryptophan synthesis pathway. Object.

minya
Download Presentation

System Biology Term Project Tryptophan Production

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. System Biology Term ProjectTryptophan Production Group 5 Teammates: 林瑋耿, 吳東耘, 許博凱, 彭嘉冠

  2. 在現存途徑中提高目標產物代謝流(五個方法) • 增加代謝途徑中限速步驟酶編碼基因的複製數 • 強化啟動子為主的關鍵基因的表現系統

  3. 在現存途徑中提高目標產物代謝流(五個方法) • 提高目標途徑活化因子的合成速率 • 去活化目標途徑抑制因子的編碼基因 • 阻斷與目標途徑相競爭的代謝途徑

  4. Tryptophan synthesis pathway Object

  5. Strategy of enhancing the tryptophan production • Increase the glucose uptake without depleting the available PEP. • Recycle PEP • Reduce PEP usage in PTS. • Increase the E4P supply, especially the late stage of fermentation. • Non-oxidatively increase E4P. • Decrease the feedback-inhibition. • Feedback-insensitive isozyme • Trp operon repressor mutant. • Optimize the glucose feed rate.

  6. PEP:carbohydratephosho-transferase system (PTS) (Yi et al., 2002.Biotechnol. Prog., 18, 1141-1148)

  7. PEP supply • Recycle PEP: PEP synthase (ppsA) recycles pyruvate generated by PTS back to PEP. (Yi et al., 2002.Biotechnol. Prog., 18, 1141-1148) • Reduce PEP usage in PTS: replace PTS with glucose facilitator protein (Zymomonas mobilis’ glf) or galactose permease (E.coli gal-P ). (Yi et al., 2003.Biotechnol. Prog., 19, 1450-1459)

  8. glucose facilitator protein or galactose permease PEP synthase help recycle the PEP replace (Yi et al., 2002.Biotechnol. Prog., 18, 1141-1148)

  9. E4P supply • At the late stage of fermentation, carbon flow will shift to TCA cycle, and the available E4P is limited. • modify the pentose phosphate pathway (PPP) by overexpressing transketolase in order to change the carbon flow with a non-oxidative pathway. (Ikeda and Katsumata, Applied and Environmental Microbiol., 2497–2502)

  10. Decrease feedback inhibition • DAHP synthase isoenzymes: • Encoding by aroF– feedback inhibited by Tyr. • Encoding by aroG– feedback inhibited by Phe. • Encoding by aroH– feedback inhibited by Trp. • Trp operon repressor mutant: • TrpR2has a frame-shift mutation in trpR that eliminates the production of functional trp repressor. • Anthranilate synthase mutant (trpE19): • trpE19 has a mutation in trpE that eliminates feedback inhibition of anthranilate synthase by tryptophan.

  11. aroF aroG aroH

  12. trpE19

  13. Optimize the glucose feed rate • The glucose feed rate profile have substantial effects on both tryptophan and glutamate (by-product) production. • A feed rate profile was designed to maximize tryptophan production while minimizing the formation of the by-product glutamate. (Dodge & Gerstner, 2002, J. Chem. Technol. Biotechnol., 77: 1238-1245)

  14. Optimize the glucose feed rate- Baseline

  15. Optimize the glucose feed rate High Feed rate Modified Feed rate

  16. Optimize the glucose feed rate- Glutamate formation

  17. Low growth rate, low [glutamate]. high growth rate, low [glutamate]. high growth rate, low [glutamate] Low growth rate, high [glutamate]

  18. Before After Results comparison

  19. Metabolic Flux Analysis

  20. Metabolic Flux Analysis Degree of freedom= 總反應數目-代謝物數目 根據可以測得的反應數據,判斷系統為determined, overdetermined, or underdetermined

  21. Metabolic Flux Analysis 可以推算無法被測量到的反應其物質的通量及判斷碳源流向!

  22. Reference • Gregory N. Stephanopoulos, et al., Metabolic Engineering - Principles and Methodology , pp.309-p351 • Joachim W. Schmid, Klaus Mauch, Matthias Reuss, Ernst D. Gilles, and Andreas Kremling, 2004. Metabolic design based on a coupled gene expression-metabolic network model of tryptophan production in Escherichia coli. Metabolic Engineering 6, 364-377 • Ikeda M. and Katsumata R., 1999, Hyperproduction of Tryptophan by Corynebacterium glutamincum with the Modified Pentose Phosphate Pathway. Appl. Environ. Microbiol., 65(6):2497-2502.

  23. Reference • Yi J., Draths K. M., Li K., Frost J. W., 2002, Modulation of Phospho- enolpyruvate Synthase Expression Increases Shikimate Pathway Product Yields in E.coli. Biotechnol. Prog. 18:1141-1148. • Yi J., Draths K. M., Li K., Frost J. W., 2003, Altered Glucose Transport and Shikimate Pathway Product Yields in E.coli. Biotechnol. Prog. 19:1450-1459. • Dodge T. C. and Gerstner J. M., 2002, Optimization of the glucose feed rate profile for the production of tryptophan from recombinant E.coli. J. Chem Technol Biotechnol. 77:1238-1245

  24. Conclusion • 由文獻上的結果可以預期,我們最終的目標是得到最大的tryptophan產率且盡可能的減少副產物glutamate。 • 如何調整使E-coli維持在高產率的環境與條件而不會快速的衰退其產率,也是值得去考慮的問題。

  25. Thanks for your attention and comments!

More Related