1 / 18

ROVINNÉ ÚTVARY A JEJICH OBVODY

ROVINNÉ ÚTVARY A JEJICH OBVODY. Co jsou to rovinné útvary?. Rovinné útvary jsou takové geometrické útvary, které leží v jedné rovině – to znamená, že je mohu narýsovat na list papíru. Znáš nějaké rovinné útvary?.

Download Presentation

ROVINNÉ ÚTVARY A JEJICH OBVODY

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. ROVINNÉ ÚTVARY A JEJICH OBVODY Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  2. Co jsou torovinné útvary? Rovinné útvary jsou takové geometrické útvary, které leží v jedné rovině – to znamená, že je mohu narýsovat na list papíru. Znáš nějaké rovinné útvary? Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  3. Co je čtverec? Čtverec je rovinný útvar, který má všechny strany stejně dlouhé . A jeho sousední strany svírají pravý úhel. a a a a Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  4. Co je obdélník? a Obdélník je rovinný útvar, který má protilehlé strany stejně dlouhé . A sousední strany svírají pravý úhel. b b a Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  5. Co je trojúhelník? Trojúhelník je rovinný útvar, který se skládá ze tří vrcholů, tří stran a ze tří úhlů. C b a A B c Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  6. Co je kosodélník? Kosodélník je rovinný útvar, který má protilehlé strany stejně dlouhé, ale sousední strany nesvírají pravý úhel. a b b a Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  7. Co je kosočtverec? Kosočtverec je rovinný útvar, který má všechny strany stejně dlouhé, ale jeho sousední strany nesvírají pravý úhel. a a a a Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  8. Co je lichoběžník? Lichoběžník je rovinný útvar, jehož jedna dvojice protilehlých stran je rovnoběžná a druhé dvě protilehlé strany jsou různoběžné. c d b a a c b d Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  9. Co je kružnice? Kružnice je rovinný útvar složený z bodů, které mají ke středu S stejnou vzdálenost. Této vzdálenosti říkáme poloměr kružnice a značíme ji r. r S x Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  10. CO JE TO OBVOD? Obvod si představím jako plot, který stavím kolem zadaného rovinného útvaru. Značka pro obvod je o. Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  11. OBVOD ČTVERCE • Obvod čtverce vypočítáš, když sečteš délky všech jeho stran. • Protože čtverec má všechny strany stejně dlouhé, pak obvod se vypočítá: o = 4 . a Příklad: Vypočítej obvod čtverce o straně 5 cm. o = 4 . a o = 4 . 5 o = 20 cm a Měl jsi to správně? Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  12. OBVOD OBDÉLNÍKU • Obvod obdélníku získám sečtením všech jeho stran. • Protože má vždy protilehlé strany stejně dlouhé, pak se obvod vypočítá: o = 2 . /a + b/ Příklad: vypočítej obvod obdélníku o stranách a = 10 cm, b = 12 cm. o = 2 . /a + b/ o = 2 . /10 + 12/ o = 2 . 22 o = 44 cm b a Měl jsi to správně? Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  13. OBVOD TROJÚHELNÍKU • Obvod trojúhelníku získám sečtením všech jeho stran. o = a + b + c Příklad: Vypočítej obvod trojúhelníku, jehož strany jsou a = 9 cm , b = 12 cm , c = 14 cm o = a + b + c o = 9 + 12 + 14 o = 35 cm b a c Měl jsi to správně? Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  14. OBVOD KOSODELNÍKU • Obvod kosodélníku získám sečtením všech jeho stran. A protože má protilehlé strany stejně dlouhé obvod bude: o = 2 . /a + b/ Příklad: vypočítej obvod kosodélníku a = 19 cm, b = 21 cm o = 2 . /a + b/ o = 2 . /19 + 21/ o = 2 . 40 o = 80 cm b a Měl jsi to správně? Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  15. OBVOD KOSOČTVERCE • Obvod kosočtverce získám sečtením všech jeho stran. • Protože kosočtverec má všechny strany stejně dlouhé – vzorec pro výpočet obvodu je: o = 4 . a Příklad: Vypočítej obvod kosočtverce o straně a = 14 cm o = 4 . a o = 4 . 14 o = 56 cm a Měl jsi to správně? Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  16. OBVOD LICHOBĚŽNÍKU • Obvod lichoběžníku získám sečtením všech jeho stran. o = a + b + c + d Příklad: Vypočítej obvod lichoběžníku a = 8 cm, b = 16 cm, c = 6 cm, d = 14 cm o = a + b + c + d o = 8 + 16 + 6 + 14 o = 44 cm c d b a Měl jsi to správně? Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  17. DÉLKA KRUŽNICE • Délku kružnice vypočítáme pomocí vzorce o = 2 π . r π = 3,14 /Ludolfovo číslo/ r = poloměr kružnice Příklad: Vypočítej délku kružnice s poloměrem r = 10 cm o = 2 . π . r o = 2 . 3,14 . 10 o = 6,28 . 10 o = 62,8 cm S r x Měl jsi to správně? Dostupné z Metodického portálu www.rvp.cz, ISSN: 1802-4785, financovaného z ESF a státního rozpočtu ČR. Provozováno Výzkumným ústavem pedagogickým v Praze.

  18. Uveřejněné odkazy: Otazník- [cit.2009-6-12] Dostupné pod licencí Creative Commons – na http://www.clker.com/clipart-10842.html Autor obrázků: Jarmila Hájková

More Related