1 / 14

SOLUTION

–6 x – 9 y = –15. EXAMPLE 1. Multiply one equation , then add. Solve the linear system:. 6 x + 5 y = 19. Equation 1. 2 x + 3 y = 5. Equation 2. SOLUTION. STEP 1. Multiply Equation 2 by –3 so that the coefficients of x are opposites . 6 x + 5 y = 19. 6 x + 5 y = 19.

mirari
Download Presentation

SOLUTION

An Image/Link below is provided (as is) to download presentation Download Policy: Content on the Website is provided to you AS IS for your information and personal use and may not be sold / licensed / shared on other websites without getting consent from its author. Content is provided to you AS IS for your information and personal use only. Download presentation by click this link. While downloading, if for some reason you are not able to download a presentation, the publisher may have deleted the file from their server. During download, if you can't get a presentation, the file might be deleted by the publisher.

E N D

Presentation Transcript


  1. –6x – 9y = –15 EXAMPLE 1 Multiply one equation, then add Solve the linear system: 6x + 5y = 19 Equation 1 2x + 3y = 5 Equation 2 SOLUTION STEP 1 Multiply Equation 2 by –3 so that the coefficients of x are opposites. 6x + 5y = 19 6x + 5y = 19 2x + 3y = 5 STEP 2 Add the equations. –4y = 4

  2. EXAMPLE 1 Multiply one equation, then add STEP 3 Solve for y. y = –1 STEP 4 Substitute –1 for yin either of the original equations and solve for x. 2x + 3y= 5 Write Equation 2. 2x + 3(–1) = 5 Substitute–1 for y. 2x + (–3) = 5 Multiply. Subtract –3 from each side. 2x = 8 x = 4 Divide each side by 2.

  3. ? 2(4)+ 3(–1) = 5 ? 6(4) +5(–1)= 19 19 = 19 5 = 5 EXAMPLE 1 Multiply one equation, then add The solution is (4, –1). ANSWER CHECK Substitute 4 for xand –1 for y in each of the original equations. Equation 2 Equation 1 6x+ 5y= 19 2x+ 3y= 5

  4. EXAMPLE 2 Multiply both equations, then subtract Solve the linear system: 4x + 5y = 35 Equation 1 2y = 3x – 9 Equation 2 SOLUTION STEP 1 Arrange the equations so that like terms are in columns. 4x + 5y = 35 Write Equation 1. –3x + 2y = –9 Rewrite Equation 2.

  5. 8x + 10y = 70 –15x +10y = –45 x = 5 EXAMPLE 2 Multiply both equations, then subtract STEP 2 Multiply Equation 1 by 2 and Equation 2 by 5 so that the coefficient of yin each equation is the least common multiple of 5 and 2, or 10. 4x + 5y = 35 –3x + 2y = –9 Subtract: the equations. STEP 3 23x = 115 Solve: for x. STEP 4

  6. ANSWER The solution is (5, 3). EXAMPLE 2 Multiply both equations, then subtract STEP 5 Substitute 5 for xin either of the original equations and solve for y. 4x+ 5y = 35 Write Equation 1. 4(5)+ 5y = 35 Substitute 5 forx. y = 3 Solve for y.

  7. ? 2(3)= 3(5) – 9 ? 4(5)+ 5(3)= 35 ANSWER The solution is (5, 3). 35= 35 6= 6 EXAMPLE 2 Multiply both equations, then subtract Substitute 5 for xand 3 for yin each of the original equations. CHECK Equation 2 Equation 1 2y= 3x– 9 4x+ 5y= 35

  8. 1. 6x – 2y = 1 ANSWER The solution is (–0.5, –2). for Examples 1 and 2 GUIDED PRACTICE Solve the linear system using elimination. –2x + 3y =–5

  9. 2. 2x + 5y = 3 ANSWER The solution is (9, –3). for Examples 1 and 2 GUIDED PRACTICE Solve the linear system using elimination. 3x + 10y =–3

  10. 3x –7y = 5 3. ANSWER The solution is (–10, –5). for Examples 1 and 2 GUIDED PRACTICE Solve the linear system using elimination. 9y =5x + 5

  11. x + y = 16 x + y = 16 B A x + y = 16 x + y = 76 D C EXAMPLE 3 Standardized Test Practice Darlene is making a quilt that has alternating stripes of regular quilting fabric and sateen fabric. She spends $76 on a total of 16 yards of the two fabrics at a fabric store. Which system of equations can be used to find the amount x(in yards) of regular quilting fabric and the amount y(in yards) of sateen fabric she purchased? 4x + 6y = 76 x + y = 76 4x + 6y = 16 6x + 4y = 76

  12. x 16 y + = EXAMPLE 3 Standardized Test Practice SOLUTION Write a system of equations where xis the number of yards of regular quilting fabric purchased and yis the number of yards of sateen fabric purchased. Equation1: Amount of fabric

  13. x y + 6 4 = 76 ANSWER The correct answer is B. B C D A EXAMPLE 3 Standardized Test Practice Equation2:Cost of fabric The system of equations is: x + y = 16 Equation 1 4x + 6y = 76 Equation 2

  14. SOCCER A sports equipment store is having a sale on soccer balls. A soccer coach purchases 10 soccer balls and 2 soccer ball bags for $155. Another soccer coach purchases 12 soccer balls and 3 soccer ball bags for $189. Find the cost of a soccer ball and the cost of a soccer ball bag. 4. ANSWER soccer ball $14.50, soccer ball bag: $5 for Example 3 GUIDED PRACTICE

More Related